Sentiment analysis refers to the task of identifying polarity of positive and negative for particular text that yield an opinion. Arabic language has been expanded dramatically in the last decade especially with the emergence of social websites (e.g. Twitter, Facebook, etc.). Several studies addressed sentiment analysis for Arabic language using various techniques. The most efficient techniques according to the literature were the machine learning due to their capabilities to build a training model. Yet, there is still issues facing the Arabic sentiment analysis using machine learning techniques. Such issues are related to employing robust features that have the ability to discriminate the polarity of sentiments. This paper proposes a hybrid method of linguistic and statistical features along with classification methods for Arabic sentiment analysis. Linguistic features contains stemming and POS tagging, while statistical contains the TF-IDF. A benchmark dataset of Arabic tweets have been used in the experiments. In addition, three classifiers have been utilized including SVM, KNN and ME. Results showed that SVM has outperformed the other classifiers by obtaining an f-score of 72.15%. This indicates the usefulness of using SVM with the proposed hybrid features.
BN Rashid, AKF Jameel, Al- Ustath: Quarterly Scientific Journal, 2017 - Cited by 15
An experiment in the semester, the second semester of the academic year (2022-2023), and the data used was not processed (the second test for two independent, inaccurate samples, the Bermon correlation coefficient, and the Spearman correlation coefficient), and the following results were reached: There is a statistically significant difference at the level of ( 0) average, 05) between the third grade who studied the plan for asking cluster questions, and between the average of those who studied the special feature according to the traditional method of selecting achievement, and enjoyed completing the specialization, choosing the experimental group, because the strategy of asking cluster questions is one of the externalities that... Lear
... Show MoreThe Dirichlet process is an important fundamental object in nonparametric Bayesian modelling, applied to a wide range of problems in machine learning, statistics, and bioinformatics, among other fields. This flexible stochastic process models rich data structures with unknown or evolving number of clusters. It is a valuable tool for encoding the true complexity of real-world data in computer models. Our results show that the Dirichlet process improves, both in distribution density and in signal-to-noise ratio, with larger sample size; achieves slow decay rate to its base distribution; has improved convergence and stability; and thrives with a Gaussian base distribution, which is much better than the Gamma distribution. The performance depen
... Show MoreEverybody is connected with social media like (Facebook, Twitter, LinkedIn, Instagram…etc.) that generate a large quantity of data and which traditional applications are inadequate to process. Social media are regarded as an important platform for sharing information, opinion, and knowledge of many subscribers. These basic media attribute Big data also to many issues, such as data collection, storage, moving, updating, reviewing, posting, scanning, visualization, Data protection, etc. To deal with all these problems, this is a need for an adequate system that not just prepares the details, but also provides meaningful analysis to take advantage of the difficult situations, relevant to business, proper decision, Health, social media, sc
... Show Moreabstract
The grammatical tools (the letters of meanings) are of great importance in understanding the meanings of the Arabic sentences,
This research is a simple attempt to show how our venerable scholars employed the meanings of these tools when they interpreted the linguistic evidence, that is, the grammatical structure largely depends on the tool in forming the meaning within the sentences and employing the meanings of these grammatical tools in explaining the linguistic evidence by clarifying their significance in the contexts of their use and effectiveness. Synthesis of the meanings of grammatical tools is an important tool in understanding the linguistic structure in order to reveal its meaning.
... Show MoreA new method for determination of allopurinol in microgram level depending on its ability to reduce the yellow absorption spectrum of (I-3) at maximum wavelength ( ?max 350nm) . The optimum conditions such as "concentration of reactant materials , time of sitting and order of addition were studied to get a high sensitivity ( ? = 27229 l.mole-1.cm-1) sandal sensitivity : 0.0053 µg cm-2 ,with wide range of calibration curve ( 1 – 9 µg.ml-1 ) good stability (more then24 hr.) and repeatability ( RSD % : 2.1 -2.6 % ) , the Recovery % : ( 98.17 – 100.5 % ) , the Erel % ( 0.50 -1.83 % ) and the interference's of Xanthine , Cystein , Creatinine , Urea and the Glucose in 20 , 40 , 60 fold of analyate were also studied .
Most companies use social media data for business. Sentiment analysis automatically gathers analyses and summarizes this type of data. Managing unstructured social media data is difficult. Noisy data is a challenge to sentiment analysis. Since over 50% of the sentiment analysis process is data pre-processing, processing big social media data is challenging too. If pre-processing is carried out correctly, data accuracy may improve. Also, sentiment analysis workflow is highly dependent. Because no pre-processing technique works well in all situations or with all data sources, choosing the most important ones is crucial. Prioritization is an excellent technique for choosing the most important ones. As one of many Multi-Criteria Decision Mak
... Show More