New Azo ligands HL1 [2-Hydroxy-3-((5-mercapto-1,3,4-thiadiazol-2-yl)diazenyl)-1-naphth aldehyde] and HL2 [3-((1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)diazenyl)-2-hydroxy-1-naphthaldehyde] have been synthesized from reaction (2-hydroxy-1-naphthaldehyde) and (5-amino-1,3,4-thiadiazole-2-thiol) for HL1 and (4-amino-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one) for HL2. Then, its metal ions complexes are synthesized with the general formula; [CrHL1Cl3(H2O)], [VOHL1(SO4)] [ML1Cl(H2O)] where M = Mn(II), Co(II), Ni(II) and Cu(II), and general formula; [Cr(L2)2 ]Cl and [M(L2)2] where M = VO(II), Mn(II), Co(II), Ni(II) and Cu(II) are reported. The ligands and their metal complexes are characterized by phisco- chemical spectroscopic techniques (FT.IR, Mass, UV-Vis, 1H and 13C-NMR, TGA, (C.H.N.), molar conductivity, Atomic Absorbance, Chloride containing magnetic susceptibility). The spectral data suggest that the (HL1) behaves as a bidentate ligand in all complexes, whereas (HL2) behaves as a tridentate ligand for all complexes; bidentate ligand in Vanadium complex is coordinated with the metal ions through azo nitrogen and oxygen atoms. Theoretical studies of these ligands and their metal complexes in gas phase using Hyper chem.8. Studies of these compounds are prepared for their bacterial activity
Simultaneous determination of Furosemide, Carbamazepine, Diazepam, and Carvedilol in bulk and pharmaceutical formulation using the partial least squares regression (PLS-1 and PLS-2) is described in this study. The two methods were successfully applied to estimate the four drugs in their quaternary mixture using UV spectral data of 84synthetic mixtures in the range of 200-350nm with the intervals Δλ=0.5nm. The linear concentration range were 1-20 μg.mL-1 for all, with correlation coefficient (R2) and root mean squares error for the calibration (RMSE) for FURO, CARB, DIAZ, and CARV were 0.9996, 0.9998, 0.9997, 0.9997, and 0.1128, 0.1292, 0.1868,0.1562 respectively for PLS-1, and for PLS-2 were 0.9995, 0.9999, 0.9997, 0.9998, and 0.1127, 0.
... Show MoreThe [2-aminobenzothiazole]was reacted with [2,4,6 triyhydroxy-acetophenon monohydrate] to give a new ligand [2-N-2,4,6-trihydroxyacetophenonyliden benzothiazole] [H3L]. This ligand was reacted with metal ions ( CoII, NiII,CuII and ZnII) in methanol as solvent with ( 1:2 ) metal : ligand ratio to give a series of new complexes with general formula [ M(H2L)2],(where:M= CoII, NiII ,CuIIand, ZnII).All compounds were characterized by spectroscopic methods ( I.R , U.V – vis,HPLC) atomic absorption, along with chloride content and conductivity measurements. According to the data of these measurements we suggested a tetrahedral
The absorption spectrum for three types of metal ions in different concentrations has been studying experimentally and theoretically. The examination model is by Gaius model in order to find the best fitting curve and the equation controlled with this behavior. The three metal ions are (Copper chloride Cu+2, Iron chloride Fe+3, and Cobalt chloride Co+2) with different concentrations (10-4, 10-5, 10-6, 10-7) gm/m3. The spectroscopic study included UV-visible and fluorescence spectrum for all different concentrations sample. The results refer to several peaks that appear from the absorption spectrum in the high concentration of all metal ions solution.
... Show MoreSolar photovoltaic (PV) has many environmental benefits and it is considered to be a practical alternative to traditional energy generation. The electrical conversion efficiency of such systems is inherently limited due to the relatively high thermal resistance of the PV components. An approach for intensifying electrical and thermal production of air-type photovoltaic thermal (PVT) systems via applying a combination of fins and surface zigzags was proposed in this paper. This research study aims to apply three performance enhancers: case B, including internal fins; case C, back surface zigzags; and case D, combinations of fins and surface zigzags; whereas the baseline smooth duct rep
Wellbore stability is considered as one of the most challenges during drilling wells due to the
reactivity of shale with drilling fluids. During drilling wells in North Rumaila, Tanuma shale is
represented as one of the most abnormal formations. Sloughing, caving, and cementing problems
as a result of the drilling fluid interaction with the formation are considered as the most important
problem during drilling wells. In this study, an attempt to solve this problem was done, by
improving the shale stability by adding additives to the drilling fluid. Water-based mud (WBM)
and polymer mud were used with different additives. Three concentrations 0.5, 1, 5 and 10 wt. %
for five types of additives (CaCl2, NaCl, Na2S
Human beings have an innate and natural aim to achieve their self-interests and to show their ability to overcome challenges in a better way, therefore the move towards self determination is expressed by intrinsic motivation. The desire of absorbing in this task is to enjoy the task in it self and benefitting from it such a motivation is the desire rooted in human nature to judge and choose in which individual is conscious in his self, abilities and adequacy that help him in control the different situations of life passed by him. His choices and actions are voluntary and non-restricted to intervention or external control because control is inner and subjective, while his behavior is self-regulated with the feeling of
... Show MoreMany additives are used to improve the performance of cables in terms of increasing their flame retardancy, thermal stability, thermal conductivity, and other characteristics. Unfortunately, most of these additives contain heavy metals. Therefore, the main objective of this study is to introduce a material representing a new generation of environmentally friendly heavy metal-free stabilizers for cable grade poly(vinyl chloride) that can compete with traditional materials in terms of performance and distinctive properties. This unique additive is Oxydtron, a synthetic silicate or simply nanocement. The tests performed are rheological properties represented by a capillary rheometry analysis, limiting o
The charge transfer at C23H17F8N8O2PRu, C44H30BF4N5O4Ru, C56H52CL5N5OOsP2 and C76H88F80N24O11P10Ru4 nitrosyl complexes are investigation and studies theoretically using the quantum consideration. Charge transfer behavior largely rely to the electric properties of nitrosyl complexes system whose depending on the main important parameters for the transmission rate constant such that: orientation transition energy, overlapping coupling coefficient, driving force energy, height barrier and Temperature T (K). Data results have been evaluated using a MATLAB program. Results show that rate of charge transfer increases due to increases the orientation transition energy.