A simple, cheap, fast, accurate, Safety and sensitive spectrophotometric method for the determination of sulfamethaxazole (SFMx), in pure form and pharmaceutical dosage forms. has been described The Method is based on the diazotization of the drug by sodium nitrite in acidic medium at 5Cº followed by coupling with salbutamol sulphate (SBS) drug to form orange color the product was stabilized and measured at 452 nm Beer’s law is obeyed in the concentration range of 2.5-87.5 ?g ml-1 with molar absorptivity of 2.5x104 L mole-1 cm-1. All variables including the reagent concentration, reaction time, color stability period, and sulfamethaxazole /salbutamol ratio were studied in order to optimize the reaction conditions. No interferences were observed Results of analysis were validated statistically and by recovery studies. These methods are successfully employed for the determination of sulfamethaxazole in some pharmaceutical preparations.. The developed method is easy to use and accurate for routine studies relative to HPLC and other techniques.
Hepatitis C virus ( HCV) is a significant global health threat that is responsible for approximately 170 million chronic infections worldwide. A feasible research was conducted to provide more understanding of viral load, effectiveness of Harvoni drug on virus concentration, and distribution of virus genotypes in Iraqi patients. Ninety eight HCV cases were investigated in this research , including 52 untreated, with an average age ± SE of 45.26 ± 2.97 years, and 46 treated with Harvoni therapy, with an average age of 39.30 ± 3.90 years. In addition, eighty healthy persons with an average age of 29.40 ± 2.84 years were included as control. These cases were attending to the Special Nursing Home Hospital in Baghdad between December 2018
... Show MoreA sensitive and selective method have been developed for the determination of palladium (II)and platinum (II) . A new reagent and two complexes have been prepared in ethanolic solutions .The method is based on the chelation of metal ions with 4-(4?- pyrazolon azo) resorcinol (APAR) to form intense color soluble products, that are stable and have a maximum absorption at 595 nm and at 463 nm and ?max of 1.11×10 4 and.1.35 ×104 Lmole-1cm-1 for Pd(II) Pt(II) respectively. A linear correlation of (1.4 – 0.2) and (3.2 -0.4 ) ppm for pd(II) pt(II) respectively .The stability constants , relative errors , a relative standard deviations for Pd(II) and Pt(II) were 0.40×105 , 0.4×104 L mol-1 ,0.34 - 0.21% and 2.4 – 0.91% respectively.
... Show MoreThin films of bulk heterojunction blend Ni-Phthalocyanine
Tetrasulfonic acid tetrasodium salt and dpoly
(3, 4-ethylenedioxythiophene) poly (styrenesulfonate) (NiPcTs:
PEDOT: PSS) with different (PEDOT:PSS) concentrations (0.5, 1, 2)
are prepared using spin coating technique with thickness 100 nm on
glass and Si substrate. The X-Ray diffraction pattern of NiPcTs
powder was studied and compared with NiPc powder, the pattern
showed that the structure is a polycrystalline with monoclinic phase.
XRD analysis of as-deposited (NiPcTs/PEDOT:PSS) thin films
blends in dicated that the film appeared at(100), (102) in
concentrations (0.5, 1) and (100) in concentration (2). The grain size
is increased with increasing
A batch and flow injection (FI) spectrophotometric methods are described for the determination of barbituric acid in aqueous and urine samples. The method is based on the oxidative coupling reaction of barbituric acid with 4-aminoantipyrine and potassium iodate to form purple water soluble stable product at λ 510 nm. Good linearity for both methods was obtained ranging from 2 to 60 μg mL−1, 5–100 μg mL−1 for batch and FI techniques, respectively. The limit of detection (signal/noise = 3) of 0.45 μg mL−1 for batch method and 0.48 μg mL−1 for FI analysis was obtained. The proposed methods were applied successfully for the determination of barbituric acid in tap water, river water, and urine samples with good recoveries of 99.92
... Show MoreThe determination of captopril (CAP) using a new continuous flow injection analysis (CFIA) method was given in this work CAP in its pure state and some of its pharmaceutical preparations. The technique can be described as simple, fast, sensitive, easy to operate, and low-cost. The CAP reacted with ammonium ceric(IV) sulfate (ACS)2(NH4 )2SO4Ce(SO4)2. 3 H2O in an acidic medium and the reaction led to the formation of a white, slightly yellowish precipitate. The formed precipitate was studied using Ayah 6S×1-ST-2D Solar cell-CFI Analyzer, a through the reflection of accident light on the surfaces of the precipitate particles at (0-1800), expressed as the response
... Show MoreSn(II) complex of the type, [Sn(SMZ)2]Cl2 was synthesized by the interaction of Sulfamethoxazole ligand and Tin Chloride, the complex was confirmed on the basis of results of elemental analyses, FT-IR, UV-Vis, molar conductance (Ëm). The elemental analysis data, suggests the stoichiometry to be 1:2 (metal: ligand) and determination of the formula of a coordination a complex formed between the Sn(II) ion and the SMZ using Job’s method of continuous variations. The study of (Ëm), indicated the electrolytic nature type 1:2. The [Sn(SMZ)2]Cl2 was screened for antibacterial activity against Gram-ve (Escherichia coli and Gram+ve (Staphylococcus aureus) and (Candida albicans) antifungal. The IR spectral data suggested that the coordination sit
... Show MoreThis paper present a simple and sensitive method for the determination of DL-Histidine using FIA-Chemiluminometric measurement resulted from oxidation of luminol molecule by hydrogen peroxide in alkaline medium in the presence of DL-Histidine. Using 70?l. sample linear plot with a coefficient of determination 95.79% for (5-60) mmol.L-1 while for a quadratic relation C.O.D = 96.44% for (5-80) mmol.L-1 and found that guadratic plot in more representative. Limit of detection was 31.93 ?g DL-Histidine (S/N = 3), repeatability of measurement was less that 5% (n=6). Positive and negative ion interferances was removed by using minicolume containing ion exchange resin located after injection valve position.