The complexes of the 2-hydroxy-4-Nitro phenyl piperonalidene with metal ions Cr(III), Ni(II), Pt(IV) and Zn(II) were prepared in ethanolic solution. These complexes were characterized by spectroscopic methods, conductivity, metal analyses and magnetic moment measurements. The nature of the complexes formed in ethanolic solution was study following the molar ratio method. From the spectral studies, monomer structures proposed for the nickel (II) and Zinc (II) complexes while dimeric structures for the chromium (III) and platinum (IV) were proposed. Octahedral geometry was suggested for all prepared complexes except zinc (II) has tetrahedral geometry, Structural geometries of these compounds were also suggested in gas phase by using hyper chem-8 program for the molecular mechanics and semi-empirical calculations. The heat of formation and binding energy for the prepared compounds was calculated by using PM3 and AMBER methods. The method of PM3 was used for evaluate the vibration spectra for the imine and starting material as authentic compound. Preliminary in vitro tests for antibacterial and antifungal activity show that most of the prepared compounds display good activity to (Staphylococcus aureus), (Escherichia coli) and (Candida albicans).
Overall enthalpy and entropy of complex formation were calculated from stability constant measurements at different tempreture also experimental results
A new ligand [ 2-chloro-N- (1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro -1H-pyrazol- 4-ylcarbamothioyl)acetamide](L) was synthesized by reacting the Chloro acetyl isothiocyanate with 4-aminoantipyrine,The ligand was characterized by(C HNS) elemental microanalysis and the spectral measurements including Uv-Vis ,IR ,1H and13C NMR spectra, some transition metals complex of this ligand were prepared and characterized by Uv-Vis, FT-IR spectra, conductivity measurements, magnetic susceptibility and atomic absorption. From the obtained results the molecular formula of all prepared complexes were [M(L)2(H2O)2]Cl2 (M+2 =Mn, Co, Ni, Cu, Zn, Cd and Hg),the proposed geometrical structure for all complexes were octahedral.
new Schiff base 4-chlorophenyl)methanimine (6R,7R)-3-methyl-8-oxo-7-(2-phenylpropanamido)-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate= (HL)= C23H20 ClN3O4S) has been synthesized from β-lactam antibiotic (cephalexin mono hydrate(CephH)=(C16H19N3O5S.H2O) and 4-chlorobenzaldehyde . Figure(1) Metal mixed ligand complexes of the Schiff base were prepared from chloride salt of Fe(II),Co(II),Ni(II),Cu(II),Zn(II) and Cd (II), in 50% (v/v) ethanol –water medium (SacH ) .in aqueous ethanol(1:1) containing and Saccharin(C7H5NO3S) = sodium hydroxide. Several physical tools in particular; IR, CHN, 1H NMR, 13C NMR for ligand and melting point molar conductance, magnetic moment. and determination the percentage of the metal in the complexes by fl
... Show MoreA new Schiff base (4-chlorophenyl)(phenyl methanimine (6R,7R)-3-methyl-8-oxo-7-(2-phenylpropanamido)-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylate=HL=C29H24ClN3O4S) has been synthesized from β-lactam antibiotic (cephalexin mono hydrate (CephH)=(C16H19N3O5S.H2O) and 4- chlorobenzophenone. Metal mixed ligand complexes of the Schiff base were prepared from chloride salt of Fe(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II), in 50% (v/v) ethanol – water medium in aqueous ethanol(1:1) and Saccharin(C7H5NO3S) containing sodium hydroxide. Several physical tools in particular; IR, C:H:N , 1H NMR,13C NMR for ligand, melting point, molar conductance, magnetic moment. and determination of the percentage of the metal in the complexes by flame(AAS
... Show MoreReaction of L1 [((E)-N1-(nitrobenzylidene)benzene-1,2-diamine] and L2( m-aminophenol), and one equivalent of di- or tri-valent metals(Cr(ӀӀӀ), Mn(ӀӀ), Fe(ӀӀӀ), Co(ӀӀ), Ni(ӀӀ), Cu(ӀӀ) and Zn(ӀӀ) afforded the complexes [M(L1)(L2)2]Cl, M=Cr(ӀӀӀ) and Fe(ӀӀӀ) and the complexes [M(L1)(L2)2] M= Mn(ӀӀ), Co(ӀӀ), Ni(ӀӀ), Cu(ӀӀ) and Zn(ӀӀ). The structure of the Schiff base ligand and their complexes are characterized by (C:H:N), FT.IR, UV.Vis, 1HNMR, 13CNMR and mass spectral. The presence of metal in the complexes are characterized by flame atomic absorption. The spectral data of the complexes have revealed the octahedral geometry. The (L1), (L2) and mixed ligand metal complexes were screened for their ability as cataly
... Show MoreA new ligand [N- (1,5- dimethyl -3- oxo- 2 – phenyl - 2 ,3 – dihydro -1H- pyrazol -4- ylcarbamothioyl) acetamide] (AAD) was synthesized by reaction of acetyl isothiocyanate with 4-aminoantipyrine, The ligand was characterized by micro elemental analysis C.H.N.S., FT-IR ,UV-Vis and 1H-13CNMR spectra, some transition metals complex of this ligand were prepared and characterized by FT-IR, UV-Vis spectra, conductivity measurements, magnetic susceptibility and atomic absorption. From the obtained results the molecular formula of all prepared complexes were [M(AAD)2(H2O)2]Cl2 (M+2 = Mn, Co, Ni, Cu, Zn, Cd and Hg),the proposed geometrical structure for all complexes were octahedral.
Mixed ligand metal complexes of CrIII, FeIII,II, NiII and CuII have been synthesized using 5-chlorosalicylic acid (5-CSA) as a primary ligand and L-Valine (L-Val) as secondary ligand. The metal complexes have been characterized by elemental analysis, electrical conductance, magnetic susceptibility measurements and spectral studies. The electrical conductance studies of the complexes indicate their electrolytic nature. Magnetic susceptibility measurements revealed paramagnetic nature of the all complexes. Bonding of the metal ion through –OHand –COOgroups of bidentate to the 5-chlorosalicylic acid and through –NH2 and –COOgroups of bidentate to the L-valine by FT-IR studies . The agar diffusion method has been used to study the antib
... Show MoreMixed ligand metal complexes of CrIII, FeIII,II, NiII and CuII have been synthesized using 5-chlorosalicylic acid (5-CSA) as a primary ligand and L-Valine (L-Val) as secondary ligand. The metal complexes have been characterized by elemental analysis, electrical conductance, magnetic susceptibility measurements and spectral studies. The electrical conductance studies of the complexes indicate their electrolytic nature. Magnetic susceptibility measurements revealed paramagnetic nature of the all complexes. Bonding