Films of PMMA and copper sulphate doped PMMA have been prepared by casting method. Absorbance and transmittance spectra were recorded in the wavelength range (300-900) nm in order to calculate, single oscillator energy, dispersion energy, average oscillator strength, the refractive index at infinite wavelength, M-1 and M -3 moments of the optical spectra, it was found that all these parameters were effected by doping.
Copper Telluride Thin films of thickness 700nm and 900nm, prepared thin films using thermal evaporation on cleaned Si substrates kept at 300K under the vacuum about (4x10-5 ) mbar. The XRD analysis and (AFM) measurements use to study structure properties. The sensitivity (S) of the fabricated sensors to NO2 and H2 was measured at room temperature. The experimental relationship between S and thickness of the sensitive film was investigated, and higher S values were recorded for thicker sensors. Results showed that the best sensitivity was attributed to the Cu2Te film of 900 nm thickness at the H2 gas.
Objective: The aim of this study to detect the correlation between trace elements such as zinc, copper and
spermatogenesis, sperm viability and motility.
Methodology: Serum and semen samples were collected from one hundred twenty patients with age ranged (20-
50 years) attending the high institute for Embryo Research and Infertility Treatment/ Baghdad University, in
addition to thirty fertile males their age comparable to that of patients. The period of this study was from June
2004 until the end of October 2004.
Results: The result of routine seminal fluid analysis of all infertile males was divided according to WHO, (1999) limit
into four groups: Asthenospermia(A), Asthenoteratospermia(AT), Oligoasthenoteratospermi
Nd:YAG laser pulses of 9 nanosecond pulse duration and operating wavelength at 1.06 μm, were utilized to drill high thermal conductivity and high reflectivity aluminum and copper foils. The results showed a dependence of drilled holes characteristics on laser power density and the number of laser pulses used. Drilled depth of 74 ϻm was obtained in aluminum at 11.036×108 W/cm2 of laser power density. Due to its higher melting point, copper required higher laser power density and/or larger number of laser pulses to melt, and a maximum depth of 25 μm was reached at 13.46×108 W/cm2 using single laser pulse.
In the present work is the deposition of copper oxide using the pulsed laser deposition technique using Reactive Pulsed Laser as a Deposition technique (RPLD), 1.064μm, 7 nsec Q-switch Nd-YAG laser with 400 mJ/cm2 laser energy’s has been used to ablated high purity cupper target and deposited on the porous silicon substrates recorded and study the effect of rapid thermal annealing on the structural characteristics, morphological, electrical characteristics and properties of the solar cell. Results of AFM likelihood of improved absorption, thereby reducing the reflection compared with crystalline silicon surface. The results showed the characteristics of the solar cell and a clear improvement in the efficiency of the solar cell in the
... Show MoreThis article includes the preparation of luminescence materials from rare earth (Eu ) ion doping Yttrium Oxide (Y2O3) 70% and SiO2 25% and study the characteristics of phosphors for ultraviolet to visible conversion. The phosphor materials have been synthesized by two steps: Preparing the powder by solid state method using Y2O3, SiO2 and Eu2O3 with doping materials concentration (70%, 25% and 5%) respectively and different calcination temperature (1000, 1200 and 1400 oC).
The second step is to prepare the colloid solution by dispersing the produced powder in a polyvinyl alcohol solution (4%) .
Powde
... Show MoreThe influence of Cr3+ doping on the ground state properties of SrTiO 3 perovskite was evaluated using GGA-PBE approximation. Computational modeling results infered an agreement with the previously published literature. The modification of electronic structure and optical properties due to Cr3+ introducing into SrTiO 3 were investigated. Structural parameters assumed that Cr3+ doping alters the electronic structures of SrTiO 3 by shifting the conduction band through lower energies for the Sr and Ti sites. Besides, results showed that the band gap was reduced by approximately 50% when presenting one Cr3+ atom into the SrTiO 3 system and particularly positioned at Sr sites. Interestingly, substituting Ti site by Cr3+ led to eliminating the ban
... Show MoreMn2+ and Ce3+ Doped ZnS nanocrystals were prepared by a simple microwave irradiation method under mild condition. The starting materials for the synthesis of Mn2+ and Ce3+ Doped ZnS P nanocrystals were zinc acetate as zinc source, thioacetamide as a sulfur source, manganese chloride and Cerium chloride as manganese and cerium sources respectively (R & M Chemical) and ethylene glycol as a solvent. All chemicals were analytical grade products and used without further purification. The nanocrystals of Mn2+ and Ce3+ Doped ZnS P with cubic structure were characterized by X-ray powder diffraction (XRD), the morphology of the film is seen by field effect scanning electron microscopy (FESEM). The composition of the samples is analyzed by EDS. The s
... Show More