The erythrocyte aggregation is an important physiological phenomenon in the circulation of blood. It is a basic characteristic of normal blood that plays a major role in the cardiovascular system, especially in the microcirculation. This study explained the kinetics of single cells rouleaux formation one- dimensional aggregate and three- dimensional aggregate, during simultaneous, and the effect of hematocrit on the process of aggregation and sedimentation. The present study was done on forty one healthy subjects. Laser light is passed through a well mixed sample of blood and the forward scattered light intensities recorded continuously. The samples were prepared with different hematocrit, (10%, 15%, 20%, and 25%). Increasing the hematocrit, (10%, 15%, 20%, and 25%) had significantly decreased the rate of rouleaux formation (P< 0.005) but increase in the rate of one and three dimensional aggregate formation. On the other hand the sedimentation rate is decreased significantly (P<0.05) with the increase in the PCV value. It was shown that changing the hematocrit have different effects on aggregation process and sedimentation.
In this work, we calculate and analyze the photon emission from quark and anti-quark interaction during annihilation process using simple model depending on phenomenology of quantum chromodynamic theory (QCD). The parameters, which include the running strength coupling, temperature of the system and the critical temperature, carry information regarding photon emission and have a significant impact on the photons yield. The emission of photon from strange interaction with anti-strange is large sensitive to decreases or increases there running strength coupling. The photons emission increases with decreases running strength coupling and vice versa. We introduce the influence of critical temperature on the photon emission rate in o
... Show MoreThis paper introduces a Laplace-based modeling approach for the study of transient converter-grid interactions. The proposed approach is based on the development of two-port admittance models of converters and other components, combined with the use of numerical Laplace transforms. The application of a frequency domain method is aimed at the accurate and straightforward computation of transient system responses while preserving the wideband frequency characteristics of power components, such as those due to the use of high frequency semiconductive switches, electromagnetic interaction between inductive and capacitive components, as well as wave propagation and frequency dependence in transmission systems.
The calculation of the oil density is more complex due to a wide range of pressuresand temperatures, which are always determined by specific conditions, pressure andtemperature. Therefore, the calculations that depend on oil components are moreaccurate and easier in finding such kind of requirements. The analyses of twenty liveoil samples are utilized. The three parameters Peng Robinson equation of state istuned to get match between measured and calculated oil viscosity. The Lohrenz-Bray-Clark (LBC) viscosity calculation technique is adopted to calculate the viscosity of oilfrom the given composition, pressure and temperature for 20 samples. The tunedequation of state is used to generate oil viscosity values for a range of temperatu
... Show MoreIn this work, the nano particles of Na-A zeolite were synthesized by sol –gel method. The samples were characterized by X-ray diffraction (XRD), X-ray luorescence (XRF), Surface area and pore volume, Atomic Force Microscope (AFM) and Fourier Transform Infrared Spectroscopy (FTIR). Results show that the nano A zeolite is with average crystal size is 74.77 nm., Si/Al ratio 1.03, BET surface area was 581.211m2/g and the pore volume for NaA was found equal to 0.355cm3/g.
The specific activity of 29 soil samples collected from Fuel
Fabrication Facility FFF at AL-Tuwaitha site, 20 km south of
Baghdad were determined using HPGe detector in a low background
configuration, it's relative efficiency of 40%, and resolution of 2keV
for the 1332 keV gamma ray emission of 60Co. The range of activity
concentrations of 226Ra, 232Th and 40K were between (12.56-31.96),
(10.2-18.4) and (47.47-402.1) Bq/kg respectively. In order to assess
any radiological hazard to human health, the absorbed gamma dose
rate D in air at 1m above the ground surface was calculated in the
range (18.87 to 36.46) nGy/h; the outdoor annual effective dose
equivalent AEDE was evaluated to vary from 0.0039 to 0.0076
Several correlations have been proposed for bubble point pressure, however, the correlations could not predict bubble point pressure accurately over the wide range of operating conditions. This study presents Artificial Neural Network (ANN) model for predicting the bubble point pressure especially for oil fields in Iraq. The most affecting parameters were used as the input layer to the network. Those were reservoir temperature, oil gravity, solution gas-oil ratio and gas relative density. The model was developed using 104 real data points collected from Iraqi reservoirs. The data was divided into two groups: the first was used to train the ANN model, and the second was used to test the model to evaluate their accuracy and trend stability
... Show MoreFeasibility of biosorbent of England bamboo plant origin was tested for removal of priority metal ions such as Cu and Zn from aqueous solutions in single metal state. Batch single metal state experiments were performed to determine the effect of dosage (0.5, 1 and 1.5 g), pH (3, 4, 4.5, 5 and 6), mixing speed (90, 111, 131, 156 and 170 rpm), temperature (20, 25, 30 and 35 °C) and metal ion concentration (10, 50, 70, 90 and 100 mg/L) on the ability of dried biomass to remove metal from solutions which were investigated. Dried powder of bamboo removed (for single metal state) about 74 % Cu and 69% Zn and maximum uptake of Cu and Zn was 7.39 mg/g and 6.96 mg/g respectively, from 100 mg/L of synthetic metal solution in 120 min. of contact t
... Show MoreEndophytic bacteria produced analogous secondary metabolites of their hosts. Similarly, the ability to generate antioxidants is not an exception. Dragon scales (Pyrrosia piloselloides), an epiphytic plant of the Polypodiaceae family, are frequently overlooked. This research aims to isolate antioxidant-producing bacteria from dragon-scale fern leaves. The antioxidant activities were tested after the extraction procedure using ethanolic extract. Bacteria were characterized and selected as candidates for antioxidant production by screening for the production of total phenolic compounds. Antioxidant levels were determined utilizing the ABTS, FRAP, and DPPH techniques. The preliminary findings of the entire phenolic compound test rev
... Show More