Preferred Language
Articles
/
bsj-2876
Darwinian Philosophy as Optimization Method for Design High Reflection Mirror Include New Merit Function
...Show More Authors

In this paper we proposes the philosophy of the Darwinian selection as synthesis method called Genetic algorithm ( GA ), and include new merit function with simple form then its uses in other works for designing one of the kinds of multilayer optical filters called high reflection mirror. Here we intend to investigate solutions for many practical problems. This work appears designed high reflection mirror that have good performance with reduction the number of layers, which can enable one to controlling the errors effect of the thickness layers on the final product, where in this work we can yield such a solution in a very shorter time by controlling the length of the chromosome and optimal genetic operators . Result shows that the construction of multilayer high reflection mirror using in this approach can be considered as a master stone for design another type of filters with most complicated performance, and it is difficult designing in other approach The experiment results demonstrate that our approach is a powerful technique. It is enable to locate the global optimum optimal automatically with high confidence without need for a good starting design.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Mar 31 2025
Journal Name
International Journal Of Advanced Technology And Engineering Exploration
Breast cancer survival rate prediction using multimodal deep learning with multigenetic features
...Show More Authors

Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Dec 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of the Point Efficiency of Sieve Tray Using Artificial Neural Network
...Show More Authors

An application of neural network technique was introduced in modeling the point efficiency of sieve tray, based on a
data bank of around 33l data points collected from the open literature.Two models proposed,using back-propagation
algorithm, the first model network consists: volumetric liquid flow rate (QL), F foctor for gas (FS), liquid density (pL),
gas density (pg), liquid viscosity (pL), gas viscosity (pg), hole diameter (dH), weir height (hw), pressure (P) and surface
tension between liquid phase and gas phase (o). In the second network, there are six parameters as dimensionless
group: Flowfactor (F), Reynolds number for liquid (ReL), Reynolds number for gas through hole (Reg), ratio of weir
height to hole diqmeter

... Show More
View Publication Preview PDF
Publication Date
Sun Oct 01 2023
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Intelligence framework dust forecasting using regression algorithms models
...Show More Authors

<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c

... Show More
View Publication
Scopus (3)
Scopus Crossref
Publication Date
Sun Sep 03 2017
Journal Name
Baghdad Science Journal
Scale-Invariant Feature Transform Algorithm with Fast Approximate Nearest Neighbor
...Show More Authors

There is a great deal of systems dealing with image processing that are being used and developed on a daily basis. Those systems need the deployment of some basic operations such as detecting the Regions of Interest and matching those regions, in addition to the description of their properties. Those operations play a significant role in decision making which is necessary for the next operations depending on the assigned task. In order to accomplish those tasks, various algorithms have been introduced throughout years. One of the most popular algorithms is the Scale Invariant Feature Transform (SIFT). The efficiency of this algorithm is its performance in the process of detection and property description, and that is due to the fact that

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Fri Aug 23 2013
Journal Name
International Journal Of Computer Applications
Lossless Compression of Medical Images using Multiresolution Polynomial Approximation Model
...Show More Authors

In this paper, a simple fast lossless image compression method is introduced for compressing medical images, it is based on integrates multiresolution coding along with polynomial approximation of linear based to decompose image signal followed by efficient coding. The test results indicate that the suggested method can lead to promising performance due to flexibility in overcoming the limitations or restrictions of the model order length and extra overhead information required compared to traditional predictive coding techniques.

View Publication
Crossref (4)
Crossref
Publication Date
Fri Dec 23 2022
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Anti-obesity effect of simvastatin and omega-3 and its combination on obese model male Wistar rats: Effect of simvastatin, omega-3 and their combination on UCP1
...Show More Authors

      Strategies to reduce obesity have become main priority for many health institution and health staff around the world, as the prevalence of obesity has risen and exacerbated in most of the world mainly because of the modern life style which tend to be more sedentary with an increase eating unhealthy fast western food. Many years ago, the lipid-lowering drug simvastatin; and omega-3 were considered as a traditional lipid-lowering drug that have been well-documented to possess anti-inflammatory, cardioprotective and triglyceride-lowering properties; and their co-administration may demonstrate a complementary effect in lowering patients' triglycerides and total cholesterol to treat atherosclero

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Tue Sep 03 2024
Journal Name
Tropical Parasitology
Investigation the effect of the aqueous extract of Chara vulgaris (L.) on visceral leishmaniasis
...Show More Authors
Abstract<sec><title>Background:

Visceral leishmaniasis (VL) is a parasitic disease that affects public health. It is described by weight reduction, irregular fever bouts, anemia, and amplification of the spleen and liver.

Materials and Methods:

Three concentrations (15.6, 31.2, and 62.5 μg/mL) were used to find the potency of an aqueous extract ofChara vulgarisalgae in the treatment of VL. A cytotoxicity assay was performed to show the cytotoxic effect of this extract on human cells. High-performance liquid chromatography (HPLC) test was done to determine the active compounds in the ext

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Crossref
Publication Date
Mon Jun 17 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Dynamic Channel Assignment Using Neural Networks
...Show More Authors

This paper presents a proposed neural network algorithm to solve the shortest path problem (SPP) for communication routing. The solution extends the traditional recurrent Hopfield architecture introducing the optimal routing for any request by choosing single and multi link path node-to-node traffic to minimize the loss. This suggested neural network algorithm implemented by using 20-nodes network example. The result shows that a clear convergence can be achieved by 95% valid convergence (about 361 optimal routes from 380-pairs). Additionally computation performance is also mentioned at the expense of slightly worse results.

View Publication Preview PDF
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Counting Functions to Generate The Primes in the RSA Algorithm and Diffie-Hellman Key Exchange
...Show More Authors

        The Rivest–Shamir–Adleman (RSA) and the Diffie-Hellman (DH) key exchange are famous methods for encryption. These methods  depended on selecting the primes p and q in order  to be secure enough . This paper shows that the named methods used the primes which are found by some arithmetical function .In the other sense, no need to think about getting primes p and q and how they are secure enough, since the arithmetical function enable to build the primes in such complicated way to be secure. Moreover, this article   gives  new construction  of the  RSA  algorithm and DH key  exchange using the

primes p,qfrom areal number x.

View Publication Preview PDF
Crossref
Publication Date
Thu Nov 01 2012
Journal Name
2012 International Conference On Advanced Computer Science Applications And Technologies (acsat)
Data Missing Solution Using Rough Set theory and Swarm Intelligence
...Show More Authors

This paper presents a hybrid approach for solving null values problem; it hybridizes rough set theory with intelligent swarm algorithm. The proposed approach is a supervised learning model. A large set of complete data called learning data is used to find the decision rule sets that then have been used in solving the incomplete data problem. The intelligent swarm algorithm is used for feature selection which represents bees algorithm as heuristic search algorithm combined with rough set theory as evaluation function. Also another feature selection algorithm called ID3 is presented, it works as statistical algorithm instead of intelligent algorithm. A comparison between those two approaches is made in their performance for null values estima

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (3)
Scopus Clarivate Crossref