The aim of this research was to study the concentrations of Uranium in the phosphorus fertilizers using Nuclear track detector (CR-39). Our present investigation is based on the study of 10 types samples for different kinds of phosphorus fertilizers which were available in the local market Some of them were Iraqi made and the others from different countries like, (Iran, Italy, Holland, Lebanon and Jordan) .. The result obtained shows that the Uranium concentration in phosphorus fertilizers samples varies from (3.59ppm) to(2.59ppm). Based on the radioactive concentration of Uranium in the samples all the results obtained between(3.59ppm) in the Iraqi super phosphate to (2.59ppm) in the mixture Iraqi phosphate fertilizer are within the international levels as given by IAEA (International atomic Energy Agency) date if compares that equal by 12ppm .
The paper presents the results of the research on the influence of the adjuvant concentration on the size of the drops produced by the spray nozzles of agricultural sprayers. For the tests, adjuvant Normaton with the composition of total nitrogen, amide nitrogen (N-NH2) and phosphorus pentoxide (P2O5) was used. The adjuvant was added to the water taken from the municipal water supply system of the city of Lublin. The tests were carried out for three concentrations, i.e. 75%, 100%, and 125% of the adjuvant concentration recommended by the manufacturer, and water without the adjuvant. The surface tension of water with adjuva
The nuclear matter density distributions, elastic electron scattering charge formfactors and root-mean square (rms) proton, charge, neutron and matter radii arestudied for neutron-rich 6,8He and 19C nuclei and proton-rich 8B and 17Ne nuclei. Thelocal scale transformation (LST) are used to improve the performance radial wavefunction of harmonic-oscillator wave function in order to generate the long tailbehavior appeared in matter density distribution at high . A good agreement resultsare obtained for aforementioned quantities in the used model.
A direct, sensitive and efficient spectrophotometric method for the determination of nitrofurantoin
drug (NIT) in pure as well as in dosage form (capsules) was described. The suggested method was
based on reduction NIT drug using Zn/HCl and then coupling with 3-methyl-2-benzothiazolinone
hydrazone hydrochloride (MBTH) in the presence of ammonium ceric sulfate. Spectrophotometric
measurement was established by recording the absorbance of the green colored product at 610 nm.
Using the optimized reaction conditions, beer’s law was obeyed in the range of 0.5-30 μg/mL, with
good correlation coefficient of 0.9998 and limits of detection and quantitation of 0.163 and 0.544
μg/mL, respectively. The accuracy and
A new colorimetric-flow injection method has been developed and validated for the detection of Cefotaxime sodium in pharmaceutical formulations. This method stands out for its rapid and sensitive nature. The formation of a brown-colored complex between Cefotaxime sodium and the Biuret reagent in a highly alkaline environment serves as the basis for the detection. The intensity of this colored complex is measured using a custom-built Continuous Flow Injection Analyzer, enabling accurate quantification of Cefotaxime sodium. Optimization studies of the chemical and physical parameters such as dilution of Biuret reagent, effect of the medium basicity, flow rate, sample loop and others have been investigated. The calibration gra
... Show MoreIn this work Different weight of pure Zinc powder suspended particles in 4ml base engine Oil were used.
Intensity of Kα Line was measured for the suspended particles ,also for mixture which consist from Zinc particle blended with Engine base Oil. Calibration Curve was drawn between Ikα line Intensity and Zinc concentration at different operation condition. The Lower Limit detection (LLD) and Sensitivity (m) of Spectrometer were determined for different Zinc Concentration (Wt%). The results of LLD and m for Samples were analyzed at Operation Condition of 30KV,17mA is best from Samples were analyzed at Operation Condition of 25KV,15mA
Doxycycline hyclate is an antibiotic drug with a broad‐spectrum activity against a variety of gram‐positive and gram‐negative bacteria and is frequently used as a pharmacological agent and as an effector molecule in an inducible gene expression system. A sensitive, reliable and fast spectrophotometric method for the determination of doxycycline hyclate in pure and pharmaceutical formulations has been developed using flow injection analysis (FIA) and batch procedures. The proposed method is based on the reaction between the chromogenic reagent (V4+) and doxycycline hyclate in a neutral medium, resulting in the formation of a yellow compound that shows maximum absorbance at 3