In this work the design and construction of a flash photolysis pulsed HCl laser was presented. The parameters of the pumping source and discharge current density was obtained, which sufficient to shift the flash lamp spectrum towards uv portion of spectrum. The maximum pulse laser energy parameters was measured. Total pressure and ratio of active gases to optimized the output pulse energy were measured , where at 125 mbar of total pressure and 1:7:14 Cl2:H2: He ratio, the laser energy was measured to be 200 mJ at pumping four flash lamps energy in the order of 6400J .The resonator consists of copper a near hemispherical mirror with the radius of curvature 3m coated by gold and reflectivity 98%,the output coupler sapphire mirror of 63% reflectivity . Total efficiency of the system was measured to be 0.0125% .
The research aims to: build and record a measure of cognitive participation among second-year female students at the College of Physical Education and Sports Sciences, University of Baghdad. The researchers used the descriptive approach in the survey style for the research sample. The sample was selected from female students and divided into: (10) female students for the survey sample, and (80) female students for the construction and codification sample. The data were statistically analyzed by the researchers using SPSS, the T-test for independent and correlated samples, Pearson's simple correlation coefficient, Cronbach's alpha, Chi-square, and Spearman-Brown. They were recruited for the samples. The study concluded that constr
... Show MoreBackground: Soft Laser has been advantageous in medical applications and is widely used in clinical practice. It is applied because it doesn’t cause the significant thermal effects or tissue hurt when irradiated. The blood response to low power laser radiation provides information about processes of laser radiation interaction with live creatures. Objective: The aim of the current work was to evaluate the laser-induced changes of in vitro erythrocyte sedimentation rate (ESR), mean corpuscular volume (MCV), and mean corpuscular hemoglobin concentration (MCHC) in patients with breast cancer by irradiating a human blood sample using a green laser and comparing its effects before and after irradiation with the same power density (100mW/c
... Show MoreIn this research constructed N2 laser system by use developed method of electric discharge. In this method used four step of electric discharge by using four capacitors, three spark gaps, high tension power supply varying in range from 12kV to 24 kV and three resistors, this method called three stage blumlein circuit. The breakdown time delay of these parallel spark gaps cement strong ultraviolet preionization in the laser channel, thus the result of these amendments the laser output is many doubled and is more increasing than that obtained using the one and two stage blumlein circuits. This system has been designed and operated to give pulse laser with wavelength at 337.1 nm. This laser system can operate without mirrors and optical res
... Show MoreA numerical simulation is made on the thermal lensing effect in an laser diode end-pumped Nd:YAG laser rod. Based on finite element method (FEM), the laser rod temperature distribution is calculated and the focal length is deduced for a Gaussian and super-Gaussian pump beam profiles.
At the pump power of 20W, the highest temperature located at the center of end-pumped face was 345K, and the thermal lens focal length was 81.4mm along the x-z axis.
The results indicate that the thermal lensing effect sensitively depend on the pump power, waist radius of the pump beam and the pump distribution in a laser rod geometry.
In this study, (50–110 nm) magnetic iron oxide (α-Fe2O3) nanoparticles were synthesized by pulsed laser ablation of iron target in dimethylformamide (DMF) and sodium dodecyl sulfate (SDS) solutions. The structural properties of the synthesized nanoparticles were investigated by using Fourier Transform Infrared (FT-IR) spectroscopy, UV–VIS absorption, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The effect of laser fluence on the characteristics of these nanoparticles was studied. Antibacterial activities of iron oxide nanoparticles were tested against Gram-positive; Staphylococcus aureus and Gram-negative; Escherichia coli, Pseudomonas aeruginosa and Serratia marcescens. The results sh
... Show MoreThe influence of the reaction gas composition during the DC magnetron sputtering process on the structural, chemical and optical properties of Ce-oxide thin films was investigated. X-ray diffraction (XRD) studies confirmed that all thin films exhibited a polycrystalline character with cubic fluorite structure for cerium dioxide. X-ray photoelectron spectroscopy (XPS) analyses revealed that cerium is present in two oxidation states, namely as CeO2 and Ce2O3, at the surface of the films prepared at oxygen/argon flow ratios between 0% and 7%, whereas the films are completely oxidized into CeO2 as the aforementioned ratio increases beyond 14%. Various optical parameters for the thin films (including an optical band gap in the range of 2.25–3.
... Show MoreThe extraction of pesticides is a critical and urgent issue in the preparation for and determination of pesticide residues. The lack of a quick, easy, and successful extraction process is the most critical and challenging problem, even if diagnostic tools have improved and pesticide residues have been better understood. This study contrasted the QuEChERS method, which uses gas chromatography with a flame ionization detector, with the LLE method, which uses liquid-liquid extraction, in order to extract pyridaben from cucumbers and spiromesifen from tomatoes. The GC-FID device was employed to ascertain the spiromesifen LOD and LOQ, which were 0.002 μg mL-1 and 0.00
Abstract
Experimental work from Magnetic Abrasive Finishing (MAF) tests was carried out design parameters (amplitude, and number of cycle which are formed the shape of electromagnetic pole), and technological parameters (current, cutting speed, working gap, and finishing time) all have an influence on the mechanical properties of the surface layer in MAF process. This research has made to study the effect of design and technological parameters on the surface roughness (Ra), micro hardness (Hv) and material removal (MR) in working zone. A set of experimental tests has been planned using response surface methodology according to Taguchi matrix (36) with three levels and six factors
... Show Moremajor goal of the next-generation wireless communication systems is the development of a reliable high-speed wireless communication system that supports high user mobility. They must focus on increasing the link throughput and the network capacity. In this paper a novel, spectral efficient system is proposed for generating and transmitting twodimensional (2-D) orthogonal frequency division multiplexing (OFDM) symbols through 2- D inter-symbol interference (ISI) channel. Instead of conventional data mapping techniques, discrete finite Radon transform (FRAT) is used as a data mapping technique due to the increased orthogonality offered. As a result, the proposed structure gives a significant improvement in bit error rate (BER) performance. Th
... Show More<p><span>Medium access control (MAC) protocol design plays a crucial role to increase the performance of wireless communications and networks. The channel access mechanism is provided by MAC layer to share the medium by multiple stations. Different types of wireless networks have different design requirements such as throughput, delay, power consumption, fairness, reliability, and network density, therefore, MAC protocol for these networks must satisfy their requirements. In this work, we proposed two multiplexing methods for modern wireless networks: Massive multiple-input-multiple-output (MIMO) and power domain non-orthogonal multiple access (PD-NOMA). The first research method namely Massive MIMO uses a massive numbe
... Show More