The chemical, physical and toxicological effects on health of synthetic dyes that used as tracking dye in the electrophoresis requires seriously search about alternative tracking dye. The present study is aimed to find an alternative dye from safe food dyes which commonly used in food coloring. Five dyes were selected depending on their chemical properties and the availability in local market: Brilliant Blue FCF, Tartrazine, Sunset Yellow FCF, Carmoisine, and green traditional, three dyes were chosen to be mixed as loading buffer: Brilliant Blue FCF, Sunset Yellow FCF as a basic because it give the whole range size of most traditional loading buffers that available in market, and adding the Carmoisine as a new indicator for the bands less than 50bp, then mixed with DNA ladder in same percentage used with traditional loading buffers to clarify the effects of dyes on DNA, migrated on 1% agarose with loading buffer promega, results showed more clarity and highly readable separation of dyes and give wide range of size in the food loading mix than promega loading dye, by viewing the gel on UV light the DNA ladder were moved smoothly, bands separated effeminately on gel and in same rate of the DNA ladder that load with promega loading buffer which indicate no interaction between the food dyes and the DNA.Our studies show that the food dye can be used as a tracking dye in place of used synthetic dye. The procedure is found to be easy, practical, safely and reliable.
In this work, the precursor [2-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylimino)acetic acid] was synthesised from 4-aminoantipyrine and glyoxylic acid, this precursor has been used in the synthesis of new multidentate ligand [2-((E)-3-(2-hydroxyphenylimino)-1,5-dimethyl-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylimino)acetic acid][H2L] type (N2O2). The ligand was refluxed in ethanol with metal ions [VO(II), Mn(II), Co(II) and Ni(II)] salts to give complexes of general molecular formula:[M(H2L)2(X)(Y)].B, where: M=VO(II), X=0, Y=OSO3-2, B=2H2O; M=Mn(II),Co(II) ,X=Cl, Y=Cl, B=0; M=Ni(II), X=H2O, Y=Cl, B=Cl. These complexes were characterised by atomic absorpition(A.A), F.T-I.R., (U.V-Vis)spectroscopies (1H,13C NMR for ligand only), alon
... Show MoreSimple, sensitive and accurate two methods were described for the determination of terazosin. The spectrophotometric method (A) is based on measuring the spectral absorption of the ion-pair complex formed between terazosin with eosin Y in the acetate buffer medium pH 3 at 545 nm. Method (B) is based on the quantitative quenching effect of terazosin on the native fluorescence of Eosin Y at the pH 3. The quenching of the fluorescence of Eosin Y was measured at 556 nm after excitation at 345 nm. The two methods obeyed Beer’s law over the concentration ranges of 0.1-8 and 0.05-7 µg/mL for method A and B respectively. Both methods succeeded in the determination of terazosin in its tablets
New azo ligand 2-((4-formyl-3-hydroxynaphthalen-2-yl) diazenyl) benzoic acid (H2L) was synthesized from the reaction of 2-aminobenzoic acid and2-hydroxy-1-naphthaldehyde. Monomeric complexes of this ligand, of general formulae [MII(L)(H2O)] with (MII = Mn, Co, Ni, Cu, Zn, Pd, Cd and Hg ) were reported. The compounds were isolated and characterized in solid state by using 1H-NMR, FT-IR, UV–Vis and mass spectral studies, elemental microanalysis, metal content, magnetic moment measurements, molar conductance and chloride containing. These studies revealed tetrahedral geometries for all complexes except PdII complex is Square planar. The study of complexes formation via molar ratio of (M:L) as (1:1). Theoretical treatments of compounds in gas
... Show MoreSpectrophotometric method was developed for the determination of copper(II) ion. Synthesized (2,2[O-Tolidine-4,4-bis azo]bis[4,5-diphenyl imidazole]) (MBBAI) was used as chromogenic reagent at pH=5. Various factors affecting complex formation, such as, pH effect, reagent concentration, time effect and temperature effect, have been considered and studied. Under optimum conditions concentration ranged from (5.00-80.00) µg/mL of copper(II) obeyed Beer`s Low. Maximum absorption of the complex was 409nm with molar absorpitivity 0.127x104 L mol-1 cm-1. Limit of detection(LOD) and Limit of quantification were 1.924 and 6.42 μg/mL, respectively.
... Show MoreSorption is a key factor in removal of organic and inorganic contaminants from their aqueous solutions. In this study, we investigated the removal of Xylenol Orange tetrasodium salt (XOTS) from its aqueous solution by Bauxite (BXT) and cationic surfactant hexadecyltrimethyl ammonium bromide modified Bauxite (BXT-HDTMA) in batch experiments. The BXT and BXT-HDTMA were characterized using FTIR, and SEM techniques. Adsorption studies were performed at various parameters i.e. temperature, contact time, adsorbent weight, and pH. The modified BXT showed better maximum removal efficiency (98.6% at pH = 9.03) compared to natural Bauxite (75% at pH 2.27), suggesting that BXT-HDTMA is an excellent adsorbent for the removal of XOTS from water. The equ
... Show MoreA charge transfer complex formed by interaction between nitron as electron donor with curcumin(1 ) as electron acceptor in ethanol at the temperature of theroom to form a colored complex. The optimum conditions of complex formation were investigated by Univariate method. The linearity range of complex was (3.124– 53.11) μg.mL-1 at 442 nm with molar absorptivity (1858.33) L.mol-1.cm-1, Sandell's sensitivity (0.1681μg.cm-2), and with a correlation coefficient (0.9935). Both modified attapulgite and modified attapulgite – complex have been characterized by using , FTIR, SEM, AFM, and XRD. Theadsorption behaviourof complex onto the modified attapulgite has been researchedthrough the variation of the parameters like the adsorbent weight, p
... Show More