The chemical, physical and toxicological effects on health of synthetic dyes that used as tracking dye in the electrophoresis requires seriously search about alternative tracking dye. The present study is aimed to find an alternative dye from safe food dyes which commonly used in food coloring. Five dyes were selected depending on their chemical properties and the availability in local market: Brilliant Blue FCF, Tartrazine, Sunset Yellow FCF, Carmoisine, and green traditional, three dyes were chosen to be mixed as loading buffer: Brilliant Blue FCF, Sunset Yellow FCF as a basic because it give the whole range size of most traditional loading buffers that available in market, and adding the Carmoisine as a new indicator for the bands less than 50bp, then mixed with DNA ladder in same percentage used with traditional loading buffers to clarify the effects of dyes on DNA, migrated on 1% agarose with loading buffer promega, results showed more clarity and highly readable separation of dyes and give wide range of size in the food loading mix than promega loading dye, by viewing the gel on UV light the DNA ladder were moved smoothly, bands separated effeminately on gel and in same rate of the DNA ladder that load with promega loading buffer which indicate no interaction between the food dyes and the DNA.Our studies show that the food dye can be used as a tracking dye in place of used synthetic dye. The procedure is found to be easy, practical, safely and reliable.
Electronic Health Record (EHR) systems are used as an efficient and effective method of exchanging patients’ health information with doctors and other key stakeholders in the health sector to obtain improved patient treatment decisions and diagnoses. As a result, questions regarding the security of sensitive user data are highlighted. To encourage people to move their sensitive health records to cloud networks, a secure authentication and access control mechanism that protects users’ data should be established. Furthermore, authentication and access control schemes are essential in the protection of health data, as numerous responsibilities exist to ensure security and privacy in a network. So, the main goal of our s
... Show More<p>Energy and memory limitations are considerable constraints of sensor nodes in wireless sensor networks (WSNs). The limited energy supplied to network nodes causes WSNs to face crucial functional limitations. Therefore, the problem of limited energy resource on sensor nodes can only be addressed by using them efficiently. In this research work, an energy-balancing routing scheme for in-network data aggregation is presented. This scheme is referred to as Energy-aware and load-Balancing Routing scheme for Data Aggregation (hereinafter referred to as EBR-DA). The EBRDA aims to provide an energy efficient multiple-hop routing to the destination on the basis of the quality of the links between the source and destination. In
... Show MoreIn many applications such as production, planning, the decision maker is important in optimizing an objective function that has fuzzy ratio two functions which can be handed using fuzzy fractional programming problem technique. A special class of optimization technique named fuzzy fractional programming problem is considered in this work when the coefficients of objective function are fuzzy. New ranking function is proposed and used to convert the data of the fuzzy fractional programming problem from fuzzy number to crisp number so that the shortcoming when treating the original fuzzy problem can be avoided. Here a novel ranking function approach of ordinary fuzzy numbers is adopted for ranking of triangular fuzzy numbers with simpler an
... Show MoreThis study carry’s out the correlation and the effect of two main variables, these variables are Job Satisfaction included six sub: wages - salaries and justice and yield, working conditions and services, pattern of supervision and the relationship with the manger, Relationship with colleagues, the content of the work and the variety of tasks, development and promotion opportunities available to an individual, and Organizational Performance included two sub variables: Efficiency, Effectiveness. This research was conducted using a questioner as a main tool, This questioner was distributed randomly to a research community composed of
... Show MoreThe rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show MoreThe rapid and enormous growth of the Internet of Things, as well as its widespread adoption, has resulted in the production of massive quantities of data that must be processed and sent to the cloud, but the delay in processing the data and the time it takes to send it to the cloud has resulted in the emergence of fog, a new generation of cloud in which the fog serves as an extension of cloud services at the edge of the network, reducing latency and traffic. The distribution of computational resources to minimize makespan and running costs is one of the disadvantages of fog computing. This paper provides a new approach for improving the task scheduling problem in a Cloud-Fog environme
Data-driven models perform poorly on part-of-speech tagging problems with the square Hmong language, a low-resource corpus. This paper designs a weight evaluation function to reduce the influence of unknown words. It proposes an improved harmony search algorithm utilizing the roulette and local evaluation strategies for handling the square Hmong part-of-speech tagging problem. The experiment shows that the average accuracy of the proposed model is 6%, 8% more than HMM and BiLSTM-CRF models, respectively. Meanwhile, the average F1 of the proposed model is also 6%, 3% more than HMM and BiLSTM-CRF models, respectively.
In aspect-based sentiment analysis ABSA, implicit aspects extraction is a fine-grained task aim for extracting the hidden aspect in the in-context meaning of the online reviews. Previous methods have shown that handcrafted rules interpolated in neural network architecture are a promising method for this task. In this work, we reduced the needs for the crafted rules that wastefully must be articulated for the new training domains or text data, instead proposing a new architecture relied on the multi-label neural learning. The key idea is to attain the semantic regularities of the explicit and implicit aspects using vectors of word embeddings and interpolate that as a front layer in the Bidirectional Long Short-Term Memory Bi-LSTM. First, we
... Show MoreAbstract:
This research aims to identify the actual reality of the supply chain processes applied in the Noor Al-Kafeel Food Products Company, which was chosen as a research sample by measuring the application and documentation gap. The current research relies on the case study method to reach the desired results, and the seven-scale scale was relied on to identify the reality of the supply chain operations applied in the researched company and the use of quantitative and qualitative methods in data collection and analysis, as quantitative methods such as the arithmetic mean were used weighted, percentage measurement, and g
... Show More