Preferred Language
Articles
/
bsj-2814
Some Probability Characteristics Functions of the Solution of a Stochastic Non-Linear Fredholm Integral Equation of the Second Kind
...Show More Authors

In this research, some probability characteristics functions (probability density, characteristic, correlation and spectral density) are derived depending upon the smallest variance of the exact solution of supposing stochastic non-linear Fredholm integral equation of the second kind found by Adomian decomposition method (A.D.M)

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
International Journal Of Hydrogen Energy
Optimisation of operating parameters on the performance characteristics of a free piston engine linear generator fuelled by CNG–H2 blends using the response surface methodology (RSM)
...Show More Authors

The free piston engine linear generator (FPELG) is a simple engine structure with few components, making it a promising power generation system. However, because the engine works without a crankshaft, the handling of the piston motion control (PMC) is the main challenge influencing the stability and performance of FPELGs. In this article, the optimal operating parameters of FPELG for maximising engine performance and reducing exhaust gas emissions were studied. Moreover, the influence of adding hydrogen (H2) to compressed natural gas (CNG) fuel on FPELG performance was investigated. The influence of operating parameters on in-cylinder pressure was also analysed. The single-piston FPELG fuelled by CNG blended with H2 was used to run the expe

... Show More
View Publication
Scopus (18)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
2nd International Conference For Engineering Sciences And Information Technology (esit 2022): Esit2022 Conference Proceedings
Finding timewise diffusion coefficient from nonlocal integral condition in one-dimensional heat equation
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sun Mar 02 2008
Journal Name
Baghdad Science Journal
Orthogonal Functions Solving Linear functional Differential EquationsUsing Chebyshev Polynomial
...Show More Authors

A method for Approximated evaluation of linear functional differential equations is described. where a function approximation as a linear combination of a set of orthogonal basis functions which are chebyshev functions .The coefficients of the approximation are determined by (least square and Galerkin’s) methods. The property of chebyshev polynomials leads to good results , which are demonstrated with examples.

View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Aug 26 2019
Journal Name
Iraqi Journal Of Science
Two-Component Generalization of a Generalized the Short Pulse Equation
...Show More Authors

     In this article, we introduce a two-component generalization for a new generalization type of the short pulse equation was recently found by Hone and his collaborators. The coupled of nonlinear equations is analyzed from the viewpoint of Lie’s method of a continuous group of point transformations. Our results show the symmetries that the system of nonlinear equations can admit, as well as the admitting of the three-dimensional Lie algebra. Moreover, the Lie brackets for the independent vectors field are presented. Similarity reduction for the system is also discussed.

View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Dec 02 2012
Journal Name
Baghdad Science Journal
Numerical Approach of Linear Volterra Integro-Differential Equations Using Generalized Spline Functions
...Show More Authors

This paper is dealing with non-polynomial spline functions "generalized spline" to find the approximate solution of linear Volterra integro-differential equations of the second kind and extension of this work to solve system of linear Volterra integro-differential equations. The performance of generalized spline functions are illustrated in test examples

View Publication Preview PDF
Crossref
Publication Date
Sun Feb 01 2015
Journal Name
Journal Of Engineering
Non-Linear Analysis of Laminated Composite Plates under General Out-Of-Plane Loading
...Show More Authors

The theoretical analysis depends on the Classical Laminated Plate Theory (CLPT) that is based on the Von-K ráman Theory and Kirchhov Hypothesis in the deflection analysis during elastic limit as well as the Hooke's laws of calculation the stresses. New function for boundary condition is used to solve the forth degree of differential equations which depends on variety sources of advanced engineering mathematics. The behavior of composite laminated plates, symmetric and anti-symmetric of cross-ply angle, under out-of-plane loads (uniform distributed loads) with two different boundary conditions are investigated to obtain the central deflection for mid-plane by using the Ritz method. The computer programs is built using Ma

... Show More
View Publication Preview PDF
Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
Numerical Solution of Energy Equation in Porous Channels under Effects of Radiation Field
...Show More Authors

     In this paper, we built a mathematical model for convection and thermal radiation heat transfer of fluid flowing through a vertical channel with porous medium under effects of horizontal magnetic field (MF) at the channel. This model represents a 2-dimensional system of non-linear partial differential equations. Then, we solved this system numerically by finite difference methods using Alternating Direction Implicit (ADI) Scheme in two phases (steady state and unsteady state). Moreover, we found the distribution and behaviour of the heat temperature inside the channel and studied the effects of Brinkman number, Reynolds number, and Boltzmann number on the heat temperature behaviour. We solved the system by buildi

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Mon Nov 01 2021
Journal Name
International Journal Of Nonlinear Analysis And Applications
Solution of Riccati matrix differential equation using new approach of variational ‎iteration method
...Show More Authors

To obtain the approximate solution to Riccati matrix differential equations, a new variational iteration approach was ‎proposed, which is suggested to improve the accuracy and increase the convergence rate of the approximate solutons to the ‎exact solution. This technique was found to give very accurate results in a few number of iterations. In this paper, the ‎modified approaches were derived to give modified solutions of proposed and used and the convergence analysis to the exact ‎solution of the derived sequence of approximate solutions is also stated and proved. Two examples were also solved, which ‎shows the reliability and applicability of the proposed approach. ‎

Publication Date
Wed Mar 18 2020
Journal Name
Baghdad Science Journal
Study of Second Hankel Determinant for Certain Subclasses of Functions Defined by Al-Oboudi Differential Operator
...Show More Authors

The concern of this article is the calculation of an upper bound of second Hankel determinant for the subclasses of functions defined by Al-Oboudi differential operator in the unit disc. To study special cases of the results of this article, we give particular values to the parameters A, B and λ

View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Mon Sep 25 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Algorithm to Solve Linear Volterra Fractional Integro-Differential Equation via Elzaki Transform
...Show More Authors

       In this work, Elzaki transform (ET) introduced by Tarig Elzaki is applied to solve linear Volterra fractional integro-differential equations (LVFIDE). The fractional derivative is considered in the Riemman-Liouville sense. The procedure is based on the application of (ET) to (LVFIDE) and using properties of (ET) and its inverse. Finally, some examples are solved to show that this is computationally efficient and accurate.

View Publication Preview PDF