In this research we solved numerically Boltzmann transport equation in order to calculate the transport parameters, such as, drift velocity, W, D/? (ratio of diffusion coefficient to the mobility) and momentum transfer collision frequency ?m, for purpose of determination of magnetic drift velocity WM and magnetic deflection coefficient ? for low energy electrons, that moves in the electric field E, crossed with magnetic field B, i.e; E×B, in the nitrogen, Argon, Helium and it's gases mixtures as a function of: E/N (ratio of electric field strength to the number density of gas), E/P300 (ratio of electric field strength to the gas pressure) and D/? which covered a different ranges for E/P300 at temperatures 300°k (Kelvin). The results showed had been tabulated and graphically represented as functions of their variables. These results a satisfactory agreement between experimental values and theoretical data given in the literature showed.
In this paper, mixed spinel Co0.4Zn0.6Fe2O4 ferrite was synthesized by microwave-assisted combustion method. Photocatalytic activity of the as-synthesized sample was investigated against methylene blue dye at room temperature at different exposure times (60-360 min.) under visible light. Phase impurity and surface morphology which are investigated with XRD analysis and field emission- scanning electron microscopy, indicate that a cubic spinel unit cell structure with a crystilite size and lattice constant are 22.5048nm and 8.37Å, respectively. The saturation magnetization exhibited directly from the hysteresis loop is (70.20emu/g). Optical properties for the investigated ferrite
... Show MoreThis work revealed the spherical aromaticity of some inorganic E4 cages and their protonated E4H+ ions (E=N, P, As, Sb, and Bi). For this purpose, we employed several evaluations like (0D-1D) nucleus independent chemical shift (NICS), multidimensional (2D-3D) off-nucleus isotropic shielding σiso(r), and natural bond orbital (NBO) analysis. The magnetic calculations involved gauge-including atomic orbitals (GIAO) with two density functionals B3LYP and WB97XD, and basis sets of Jorge-ATZP, 6-311+G(d,p), and Lanl2DZp. The Jorge-ATZP basis set showed the best consistency. Our findings disclosed non-classical aromatic characters in the above molecules, which decreased from N to Bi cages. Also, the results showed more aromaticity in E4 than E4H+
... Show MoreIn this work, copper substituted cobalt ferrite nanoparticles with
chemical formula Co1-xCuxFe2O4 (x=0, 0.3, and 0.7), has been
synthesized via hydrothermal preparation method. The structure of
the prepared materials was characterized by X-ray diffraction (XRD).
The (XRD) patterns showed single phase spinel ferrite structure.
Average crystallite size (D), lattice constant (a), and crystal density
(dx) have been calculated from the most intense peak (311).
Comparative standardization also performed using smaller average
particle size (D) on the XRD patterns of as-prepared ferrite samples
in order to select most convenient hydrothermal synthesis conditions
to get ferrite materials with smallest average particl
At atmospheric pressure and at a frequency of 9.1 kHz, a constructed magnetically stabilized tornado gliding arc discharge (MSGAD) system was utilized in this study to generate a non-thermal plasma with an alternating voltage source from 2,4,6,8 to 10 kV. Argon gas was used to generate the arc plasma with an adjustable flow rate using a flow meter regulator to stabilize the gas flow rate to 2 L/min. A gliding plasma discharge is achieved by a magnetic field for the purpose of a planned investigation. The influence of the magnetically stabilized tornado gliding arc discharge parameters such as magnetic field and applied voltage on microscopic tornado plasma parameters was studied. The electron temperature1was measured using a Boltzmann plot
... Show MoreAbstract: Microfluidic devices present unique advantages for the development of efficient drug assay and screening. The microfluidic platforms might offer a more rapid and cost-effective alternative. Fluids are confined in devices that have a significant dimension on the micrometer scale. Due to this extreme confinement, the volumes used for drug assays are tiny (milliliters to femtoliters).
In this research, a microfluidic chip consists of micro-channels carved on substrate materials built by using Acrylic (Polymethyl Methacrylate, PMMA) chip was designed using a Carbon Dioxide (CO2) laser machine. The CO2 parameters have influence on the width, depth, roughness of the chip. In order to have regular
... Show MoreFirstly, in this study, a brief updated description and applications of different solar collectors used in renewable energy systems for supplying electric and thermal energy was presented. Secondly, an attempt was made to utilize tilting orientation of solar collector for maximizing collector energy with time in respect to horizontal orientation. For energy calculation, global solar radiation was used since they are directly related. For that purpose, field measurements of half-hourly radiation on two flat panels of tilting and horizontal orientations were carried out throughout 8-month period under local climate of Baghdad. Then, energy gain and radiation level averages were calculated based on the field radiation
... Show Morenew, simple and fast solid-phase extraction method for separation and preconcentration of trace theophylline in aqueous solutions was developed using magnetite nanoparticles (MIONPs) coated with aluminium oxide (AMIONPs) and modified with palmitate (P) as an extractor (P@AMIONPs). It has shown that the developed method has a fast absorbent rate of the theophylline at room temperature. The parameters that affect the absorbent of theophylline in the aqueous solutions have been investigated such as the amount of magnetite nanoparticle, pH, standing time and the volume, concentration of desorption solution. The linear range, limit of quantification (LOQ) and limit of detection (LOD) for the determination of theophylline were 0.05-2.450 μg mL-
... Show MoreBoth traditional and novel techniques were employed in this work for magnetic shielding evaluation to shed new light on the magnetic and aromaticity properties of benzene and 12 [n]paracyclophanes with n = 3–14. Density functional theory (DFT) with the B3LYP functional and all-electron Jorge-ATZP and x2c-TZVPPall-s basis sets was utilized for geometry optimization and magnetic shielding calculations, respectively. Additionally, the 6-311+G(d,p) basis set was incorporated for the purpose of comparing the magnetic shielding results. In addition to traditional evaluations such as NICS/NICSzz-Scan, and 2D-3D σiso(r)/σzz(r) maps, two new techniques were implemented: bendable grids (BGs) and cylindrical grids (CGs) of ghost atoms (Bqs). BGs a
... Show More