In this study, cloud point extraction combined with molecular spectrometry as an eco-friendly method is used for extraction, enrichment and determination of bendiocarb (BC) insecticide in different complex matrices. The method involved an alkaline hydrolysis of BC followed Emerson reaction in which the resultant phenol is reacted with 4-aminoantipyrene(4-AAP) in the presence of an alkaline oxidant of potassium ferric cyanide to form red colored product which then extracted into micelles of Triton X-114 as a mediated extractant at room temperature. The extracted product in cloud point layer is separated from the aqueous layer by centrifugation for 20 min and dissolved in a minimum amount of a mixture ethanol: water (1:1) followed the determination of BC by using spectrophotometry at a wavelength maximum of 470 nm. The most important parameters affecting the extraction and determination of BC are conducted via a classical optimization. Under the optimum conditions established , Beer’s law is obeyed in the range of 0.1-4 µg mL-1 while the optimum concentration ranges estimated by Ringbom’s plot was of 0.4-2.12 µg mL-1. The enrichment factor was of 59.87 fold leading to achieve the limit of detection of 0.076 ?g mL-1. The proposed method gives superior sensitivity in terms of the molar absorptivity of 1.99x105 L mol-1 cm-1 and extraction efficiency of 98.0%. The established method is applied in the analysis of the spiked vegetables, orange, soil and water samples with appropriate concentration with BC standard.
An Alternating Directions Implicit method is presented to solve the homogeneous heat diffusion equation when the governing equation is a bi-harmonic equation (X) based on Alternative Direction Implicit (ADI). Numerical results are compared with other results obtained by other numerical (explicit and implicit) methods. We apply these methods it two examples (X): the first one, we apply explicit when the temperature .
In this paper, the finite difference method is used to solve fractional hyperbolic partial differential equations, by modifying the associated explicit and implicit difference methods used to solve fractional partial differential equation. A comparison with the exact solution is presented and the results are given in tabulated form in order to give a good comparison with the exact solution
In this paper we proposed a new method for selecting a smoothing parameter in kernel estimator to estimate a nonparametric regression function in the presence of missing values. The proposed method is based on work on the golden ratio and Surah AL-E-Imran in the Qur'an. Simulation experiments were conducted to study a small sample behavior. The results proved the superiority the proposed on the competition method for selecting smoothing parameter.
The aim of this paper is to propose a reliable iterative method for resolving many types of Volterra - Fredholm Integro - Differential Equations of the second kind with initial conditions. The series solutions of the problems under consideration are obtained by means of the iterative method. Four various problems are resolved with high accuracy to make evident the enforcement of the iterative method on such type of integro differential equations. Results were compared with the exact solution which exhibits that this technique was compatible with the right solutions, simple, effective and easy for solving such problems. To evaluate the results in an iterative process the MATLAB is used as a math program for the calculations.
In this paper the modified trapezoidal rule is presented for solving Volterra linear Integral Equations (V.I.E) of the second kind and we noticed that this procedure is effective in solving the equations. Two examples are given with their comparison tables to answer the validity of the procedure.
In this paper, a method based on modified adomian decomposition method for solving Seventh order integro-differential equations (MADM). The distinctive feature of the method is that it can be used to find the analytic solution without transformation of boundary value problems. To test the efficiency of the method presented two examples are solved by proposed method.
هناك دائما حاجة إلى طريقة فعالة لتوليد حل عددي أكثر دقة للمعادلات التكاملية ذات النواة المفردة أو المفردة الضعيفة لأن الطرق العددية لها محدودة. في هذه الدراسة ، تم حل المعادلات التكاملية ذات النواة المفردة أو المفردة الضعيفة باستخدام طريقة متعددة حدود برنولي. الهدف الرئيسي من هذه الدراسة هو ايجاد حل تقريبي لمثل هذه المشاكل في شكل متعددة الحدود في سلسلة من الخطوات المباشرة. أيضا ، تم افتراض أن مقام النواة
... Show More