A method is developed for the determination of iron (III) in pharmaceutical preparations by coupling cloud point extraction (CPE) and UV-Vis spectrophotometry. The method is based on the reaction of Fe(III) with excess drug ciprofloxacin (CIPRO) in dilute H2SO4, forming a hydrophobic Fe(III)- CIPRO complex which can be extracted into a non-ionic surfactant Triton X-114, and iron ions are determined spectrophotometrically at absorption maximum of 437 nm. Several variables which impact on the extraction and determination of Fe (III) are optimized in order to maximize the extraction efficiency and improve the sensitivity of the method. The interferences study is also considered to check the accuracy of the procedure. The results have shown that the preconcentration factor of 71 fold leading to obtain a limit of detection of 2.67 ng mL-1 with linear calibration range of 5-150 ng mL-1 (r=0.9998) and a superb sensitivity in terms of molar absorptivity of 1.13x106 L.mol-1.cm-1 . The mean percent recovery of 99.78±0.53% and the precision (RSD %) ranged from 1.96 to 0.76 are achieved. The developed method is applied to the determination of iron in four selected pharmaceutical drugs. The experimental values agree statistically with the quoted values stated by the manufacturer’ companies.
A simple, precise, rapid, and accurate reversed – phase high performance liquid chromatographic method has been developed for the determination of guaifenesin in pure from pharmaceutical formulations.andindustrial effluent. Chromatography was carried out on supelco L7 reversed- phase column (25cm × 4.6mm), 5 microns, using a mixture of methanol –acetonitrile-water: (80: 10 :10 v/v/v) as a mobile phase at a flow rate of 1.0 ml.min-1. Detection was performed at 254nm at ambient temperature. The retention time for guaifenesin was found 2.4 minutes. The calibration curve was linear (r= 0.9998) over a concentration range from 0.08 to 0.8mg/ml. Limit of detection (LOD) and limit of quantification ( LOQ) were found 6µg/ml and 18µg/ml res
... Show MoreLiquid – liquid equilibria data were measured at 293.15 K for the pseudo ternary system (sulfolane + alkanol) + octane + toluene. It is observed that the selectivity of pure sulfolane increases with cosolvent methanol but decreases with increasing the chain length of hydrocarbon in 1-alkanol. The nonrandom two liquid (NRTL) model, UNIQUAC model and UNIFAC model were used to correlate the experimental data and to predict the phase composition of the systems studied. The calculation based on NRTL model gave a good representation of the experimental tie-line data for all systems studied. The agreement between the correlated and the experimental results was very good
The major goal of this research was to use the Euler method to determine the best starting value for eccentricity. Various heights were chosen for satellites that were affected by atmospheric drag. It was explained how to turn the position and velocity components into orbital elements. Also, Euler integration method was explained. The results indicated that the drag is deviated the satellite trajectory from a keplerian orbit. As a result, the Keplerian orbital elements alter throughout time. Additionally, the current analysis showed that Euler method could only be used for low Earth orbits between (100 and 500) km and very small eccentricity (e = 0.001).
Mefenamic acid was esterified with starchwith[1:1] Molar ratio, as drug substituted with natural polymer, to prolongthe period of hydrolysis of drug polymer with other advantages. The new prodrug starch was characterized by FT-IR and UV-Visible and 1H-NMR spectroscopies. The physical properties were studied and controlled drug release was studied in different pH values at 37oC. The stability of drug was carried out by measuring the absorbance of mefenamic starch which hydrolyzed in HCl solution of pH 1.1 (artificial gastric fluid) and phosphate buffer of pH 7.4 (simulating intestinal fluid SIF) at 37oC for several days. The thermal analysis such as DSC was studied.
In this work, the mass attenuation coefficient, effective atomic number and half value layer parameters were calculated for silicate (SiO2) mixed with various levels of lead oxide and iron oxide as reinforced materials. SiO2 was used with different concentrations of PbO and Fe2O3 (25, 50 and 75 weight %). The glass system was prepared by the melt-quenching method. The attenuation parameters were calculated at photon energies varying from 1keV to 100MeV using the XCOM program (version 3.1). In addition, the mass attenuation coefficient and half value layer parameters for selected glass samples were experimentally determined at photon energies 0.662 and 1.28 MeV emitted from radioactive sources 137Cs and 22Na respe
... Show MoreThis researd exhibit's a method to determine the change in Gibbs function,(enthai py,entropy. and specific heat capacity) tor monovariant heterogeneous equilibria .The thermodynamical quan.tities were obtained jndirectly with m the measurment of temperature dependent on eql,lilibrium system.
Low cost Co-Precipitation method was used for Preparation of novel nickel oxide (NiO) nano particle thin films with Simple, with two different PH values 6, 12 and its effect on structural and optical properties as an active optical filter. Experimental results of structural properties X-ray diffraction (XRD) showed that both Nickel oxide nanoparticles with (PH=6 and 12) have polycrystalline structure smaller average particle size about 8.5 nm for PH=6 in comparison with PH=12. Morphological studies using Scanning electron microscopy (SEM) and atomic force microscope (AFM) show uniform nano rod distribution for PH=6 with smaller average diameter, average roughness as compared with NiO with
... Show MoreMagnetic nanoparticles (MNPs) of iron oxide (Fe3O4) represent the most promising materials in many applications. MNPs have been synthesized by co-precipitation of ferric and ferrous ions in alkaline solution. Two methods of synthesis were conducted with different parameters, such as temperature (25 and 80 ̊C), adding a base to the reactants and the opposite process, and using nitrogen as an inert gas. The product of the first method (MNPs-1) and the second method (MNPs-2) were characterized by x-ray diffractometer (XRD), Zeta Potential, atomic force microscope (AFM) and scanning electron microscope (SEM). AFM results showed convergent particle size of (MNPs-1) and (MNPs-2) with (86.01) and (74.14)
... Show More