A method is developed for the determination of iron (III) in pharmaceutical preparations by coupling cloud point extraction (CPE) and UV-Vis spectrophotometry. The method is based on the reaction of Fe(III) with excess drug ciprofloxacin (CIPRO) in dilute H2SO4, forming a hydrophobic Fe(III)- CIPRO complex which can be extracted into a non-ionic surfactant Triton X-114, and iron ions are determined spectrophotometrically at absorption maximum of 437 nm. Several variables which impact on the extraction and determination of Fe (III) are optimized in order to maximize the extraction efficiency and improve the sensitivity of the method. The interferences study is also considered to check the accuracy of the procedure. The results have shown that the preconcentration factor of 71 fold leading to obtain a limit of detection of 2.67 ng mL-1 with linear calibration range of 5-150 ng mL-1 (r=0.9998) and a superb sensitivity in terms of molar absorptivity of 1.13x106 L.mol-1.cm-1 . The mean percent recovery of 99.78±0.53% and the precision (RSD %) ranged from 1.96 to 0.76 are achieved. The developed method is applied to the determination of iron in four selected pharmaceutical drugs. The experimental values agree statistically with the quoted values stated by the manufacturer’ companies.
Sustainability including renewable energy and green power, is one of the important feature in recent years due to environmental constraints and the emission of CO2 from fossil fuel. Pressure retarded osmosis (PRO) process is considered one of the effective technology for power generation. This study assessed the application of pressure retarded osmosis to produce power from Tigris River water in Baghdad City, Iraq. Spiral wound TFC membrane was tested in the PRO process with different variables. The effect of different types of draw solutions (MgCl2, NaCl, Sodium Formate, KCl, Sodium Acetate), applied pressure (0 – 7 bar), and draw solution concentration (0.08 and 0.4 M) were tested in this work. The flux, recovery, and power density for
... Show MoreBreast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep
... Show MoreResearch summarized in applying the model of fuzzy goal programming for aggregate production planning , in General Company for hydraulic industries / plastic factory to get an optimal production plan trying to cope with the impact that fluctuations in demand and employs all available resources using two strategies where they are available inventories strategy and the strategy of change in the level of the workforce, these strategies costs are usually imprecise/fuzzy. The plant administration trying to minimize total production costs, minimize carrying costs and minimize changes in labour levels. depending on the gained data from th
... Show MoreMalaysia's growing population and industrialisation have increased solid waste accumulation in landfills, leading to a rise in leachate production. Leachate, a highly contaminated liquid from landfills, poses environmental risks and affects water quality. Conventional leachate treatments are costly and time-consuming due to the need for additional chemicals. Therefore, the Electrocoagulation process could be used as an alternative method. Electrocoagulation is an electrochemical method of treating water by eliminating impurities by applying an electric current. In the present study, the optimisation of contaminant removal was investigated using Response Surface Methodology. Three parameters were considered for optimisation: the curr
... Show MoreThe production of power using the process of pressure–retarded osmosis (PRO) has been studied both experimentally and theoretically for simulated sea water vs. river water and deionized water under two cases: the first is for simulated real conditions of sea water and river water and second under low brine solution concentration to examine the full profile of the power- pressure. The influence of concentration polarization (CP) on water flux has been examined as well.
The support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample
... Show MoreDrip irrigation is one of the conservative irrigation techniques since it implies supplying water directly on the soil through the emitter; it can supply water and fertilizer directly into the root zone. An equation to estimate the wetted area in unsaturated soil is taking into calculating the water absorption by roots is simulated numerically using HYDRUS (2D/3D) software. In this paper, HYDRUS comprises analytical types of the estimate of different soil hydraulic properties. Used one soil type, sandy loam, with three types of crops; (corn, tomato, and sweet sorghum), different drip discharge, different initial soil moisture content was assumed, and different time durations. The relative error for the different hydrauli
... Show MoreMany authors investigated the problem of the early visibility of the new crescent moon after the conjunction and proposed many criteria addressing this issue in the literature. This article presented a proposed criterion for early crescent moon sighting based on a deep-learned pattern recognizer artificial neural network (ANN) performance. Moon sight datasets were collected from various sources and used to learn the ANN. The new criterion relied on the crescent width and the arc of vision from the edge of the crescent bright limb. The result of that criterion was a control value indicating the moon's visibility condition, which separated the datasets into four regions: invisible, telescope only, probably visible, and certai
... Show More