In this paper a new series of morpholine derivatives was prepared by reacting the morpholine with ethyl chloro acetate in the presence triethylamine as a catalyst in benzene gave morpholin-N-ethyl acetate(1) which reacted with hydrazine hydrate in ethanol, and gave morpholin-N-ethyl acetohydrazide (2) . Morpholin-N-aceto semithiocarbazide (3) were prepared by reacting compound(2) with ammonium thiocyanate , concentrated hydrochloric acid and ethanol as a solvent .Compound (3) reacted with sodium hydroxide and hydrochloric acid to give 5-(morpholin-N-methylene)-1H-1,2,4-triazole-3-thiol (4) .The new series of 1,2,4-triazol derivatives (5-8) was synthesized by reaction of compound(4) with formaldehyde , DMF as a solvent and different secondary amines. Preparation of new 1,2,4-triazoline derivatives (9) by reaction compound (4) with bromo acetic acid . Reaction of compound (9) with different aromatic aldehyde and dimethyl sulfoxide as a solvent obtained compounds (10-13).
Three new hydrazone derivatives of Etodolac were synthesized and evaluated for their anti-inflammatory activity by using egg white induced paw edema method. All the synthesized target compounds were characterized by CHN- microanalysis, FT-IR spectroscopy, and 1HNMR analysis. The synthesis of the target (P1-P3) compounds was accomplished following multistep reaction procedures. The synthesized target compounds were found to be active in reducing paw edema thickness and their anti-inflammatory effect was comparable to that of the standard (Etodolac).
Starting from bis (4,4'-diamino phenoxy) ethan(1), a variety of phenolicschiff bases (methylolic, etheric, epoxy) derivatives have been synthesized. All proposed structure were supported by FTIR, 1H-NMR, 13C-NMR Elemental analysis, some derivatives evaluated by thermal analysis (TGA).
The new symmetry pyromellitdiimide [VII]a-c,n were synthesized by two-step reactions from the corresponding pyromellitic dianhydride . A new symmetrical amic acid [VI]a-c,n was synthesized by the reaction of pyromellitic dianhydride with different heterocyclic amines in dry acetone . The second reaction step includes intramolecular cyclization of amic acid in the presence of sodium acetate -acetic anhydride system at 850C. Structures of the synthesized compounds have been ascertained by their melting points , C.H.N analysis , UV-Vis, FTIR and 1HNMR spectroscopy.
A new series of Sulfamethoxazole derivatives was prepared and examined for antifibrinolytic and antimicrobial activities. Sulfamethoxazole derivatives bear heterocyclic moieties such as 1,3,4-thiadiazine {3}, pyrazolidine-3,5-diol {4} 6-hydroxy-1,3,4-thiadiazinane-2-thione {5} and [(3-methyl-5-oxo-4,5-dihydro-1H-pyrazol-4-yl)diazenyl] {8}. Their structures were elucidated by spectral methods (FT-IR, H1-NMR). Physical properties are also determined for all compound derivatives. Recently prepared compounds were tested for their antimicrobial activity in the laboratory. Each screened compound showed good tendency to moderate antimicrobial activity.
On the basis of the results which was previously obtained from the structural and the theoretical studies on ~-adrenergic drugs, a series of 2-propanolamine derivatives containing triazole moiety have been prepared and evaluated for their cardiovascular activity . These derivatives were tested by using spontaneously-beating right atria of albino rats.
The chalcones 1( a,b) were prepared by the reaction of 2- acetyl benzofuran with two aromatic aldehydes in the presence of alkaline media. These chalcones are used as starting material to obtain the desired heterocyclic: pyrazolin, isoxazoline, pyrimidinthion, pyrimidinone, cyclohexanone and indazole derivatives. The structure of newly synthesized heterocyclic compounds were established on the basis of their melting points, elemental analysis(C.H.N), FTIR and 1HMNR (for some of them) spectral data . The synthesized compounds have been screened for their antibacterial activities, they exhibited good antibacterial activity against Escherichia coli (G-) and Staphylococus aureus (G+) .
A new two series of liquid crystalline Schiff bases containing thiazole moiety with different length of alkoxy spacer were synthesized, and the relation between the spacer length and the liquid crystalline behavior was investigated. The molecular structures of these compounds were performed by elemental analysis and FTIR, 1HNMR spectroscopy. The liquid crystalline properties were examined by hot stage optical polarizing microscopy (OPM) and differential scanning calorimetry (DSC). All compouns of the two series display liquid crystalline nematic mesophase. The liquid crystalline behaviour has been analyzed in terms of structural property relationship
This work contain many steps starting from esterification of isophthalic acid to yield diester compound [I] which was converted to their acid hydrazide [II], then the later compound reacted with ethylacetoacetate to yield pyrazol-5-one compound [III]. Afterword added acetyl chloride to give the compound [IV], the reaction of this compound with theiosemicarbazide led to produce a new carbothioamide compound [V], which was reacted with ethyl chloro acetate to yield the thioxoimidazolidin compound [VI]. The condensation reactions of this compound with different substituted aldehyde give new alkene derivatives [VII] ad. The synthesized compounds were characterized by melting points, FT-IR, 1H-NMR and Mass spectroscopy.
In this paper, some chalcone derivatives (C1, C2) were synthesized based on the reaction of equal amount of substituted acetophenone and substituted banzaldehyde in basic medium. Oxazine and thiazine derivatives were prepared from the reaction of chalcones (C1-C2) with urea and thiourea respectively in a basic medium. Pyrazole derivatives were prepared based on the reaction of chalcones with hydrazine mono hydrate or phenyl hydrazine in the presence of glacial acetic acid as a catalyst. The new synthesized compounds were identified using various physical techniques like1 H-NMR and FT-IR spectra.
In this research various of 2,5-disubstituted 1,3,4-oxadiazole (Schiff base, oxo-thiazolidine , and other compounds) were synthesized from 2,5-di(4,4?- amino-1,3,4-oxadiazole ) which use quently synthesized from mixture of 4-amino benzoic acid and hydrazine in the presence of polyphosphorus acid. The synthesized compounds were characterized by using some Spectral data (UV, FT-IR, and 1H-NMR).