In the present work, the critical micelle concentration (CMC) of the solution of Sodium dodecyl sulfate (SDS) as anionic surfactant, Cocamidopropyl Betaine (CAPB) as amphoteric surfactant, and their mixture have been determined using surface tension and conductivity measurements at a temperature range 293 -323 K. The adsorption and thermodynamic micellization parameters (?G?m, ?G?ads, ?max ,Amin,?cmc ) for individual surfactants was calculated. Rosen model which is focuses on the adsorbed mixed surfactant film at the air/solution interface was used to calculate the interaction parameter ( ?? ) at the interface and the activity coefficients g1 and g2. The results indicate that the CMC of the individual surfactants was affected by the temperature at the temperature range studied. Also, the results indicate a synergistic effect present at the air – solution mixed film of surfactants.
Mixed ligand complexes of bivalent metal ions, viz; Co(II), Ni(II), Cu(II) and Zn(II) of the composition [M(A)2((PBu3)2]in(1:2:2)(M:A:(PBu3). molar ratio, (where A- Anthranilate ion ,(PBu3)= tributylphosphine. M= Co(II),Ni(II),Cu(II) and Zn(II). The prepared complexes were characterized using flame atomic absorption, by FT-IR, UV/visible spectra methods as well as magnetic susceptibility and conductivity measurements. The metal complexes were tested in vitro against three types of pathogenic bacteria microorganisms: (Staphylococcus, Klebsiella SPP .and Bacillas)to assess their antimicrobial properties. Results. The study shows that all complexes have octahedral geometry; in addition, it has high activity against tested bacteria. Based on th
... Show MoreThe synthesized ligand (3-(2-amino-5-(3,4,5-tri-methoxybenzyl)pyrimidin-4-ylamino)-5,5-dimethylcyclohex-2-enone] [H1L1] was characterized via fourier transform infrared spectroscopy (FTIR), 1H, 13C – NMR, Mass spectra, (CHN analysis), UV-vis spectroscopic approaches. Analytical and spectroscopic techniques like chloride content, micro-analysis, magnetic susceptibility UV-visible, conductance, and FTIR spectra were used to identify mixed ligand complexes. Its (ML13ph) mixed ligand complexes [M= Co (II), Ni (II), Cu (II), Zn (II), and Cd (II); (H1L1) = β-enaminone ligand=L1 and (3ph) =3-aminophenol= L2]. The results demonstrate that the complexes are produced with a molar ratio of M: L1:L2 (1:1:1). To generate the appropriate compl
... Show MoreThe current work reports a new Schiff base [N1-benzylidenebenezene-1,2-diamine(L) = C20H16N2] has been synthesized from benzaldehyde (C6H5CHO) and O- aminoaniline (O-C6H4(NH2)2. Metal mixed ligand complexes of the Schiff base were prepared from chloride salts of Zn(II), Cd(II) and Hg(II) in ethanol and 8-hydroxyquinoline(8HQ)(C9H7NO) containing sodium hydroxide. All the complexes were characterized on the basis of their; FT-IR and U.V spectra, melting point, molar conductance, and determination of the percentage of the metal in the complexes by flame (AAS). In the all complexes, (8HQ) behaves as a bidentate ligand as primary ligand through –-OH phenolic group and –N groups of pyridine group. Also, the prepared ligand (L) was bidentate i
... Show MoreThe aim of the work is synthesis and characterization of bidentate ligand [3-(3-acetylphenylamino)-5,5-dimethylcyclohex-3-enone][HL], from the reaction of dimedone with 3-amino acetophenone to produce the ligand [HL], the reaction was carried out in dry benzene as a solvent under reflux. The prepared ligand [HL] was characterized by FT-IR, UV-Vis spectroscopy, 'H, 8C-NMR spectra, Mass spectra, (C.H.N) and melting point. The mixed ligand complexes were prepared from ligand [HL] was used as a primary ligand while 8-hydroxy quinoline [HQ] was used as a secondary ligand with metal ion M(IT).Where M(IT) = (Mn ,Co ,Ni ,Cu ,Zn ,Cd and Pd) at reflux ,using ethanol as a solvent, KOH as a
... Show MoreThe aim of the work is synthesis and characterization of bidentate ligand [3-(3-acetylphenylamino)-5,5-dimethylcyclohex-3-enone][HL], from the reaction of dimedone with 3-amino acetophenone to produce the ligand [HL], the reaction was carried out in dry benzene as a solvent under reflux. The prepared ligand [HL] was characterized by FT-IR, UV-Vis spectroscopy, 1H, 13C-NMR spectra, Mass spectra, (C.H.N) and melting point. The mixed ligand complexes were prepared from ligand [HL] was used as a primary ligand while 8-hydroxy quinoline [HQ] was used as a secondary ligand with metal ion M(Π).Where M(Π) = (Mn ,Co ,Ni ,Cu ,Zn ,Cd and Pd) at reflux ,using ethanol as a solvent, KOH as a base. Complexes of the composition [M(L)(Q)] with (1
... Show MoreIn this work, lanthanium (III) complexes were synthesized using by Schiff base ligand (L) derived from benzaldehyde and o-aminoaniline with five amino acids (AA) from glycine (Gly), L-alanine (Ala), L-valine (Val), L-asparagine (Asp) and DL- phenylalanine (Phe). The Schiff base ligand has been characterized by elemental analysis, (MASS, FTIR, 1HNMR, 13CNMR, UV-VIS) electronic spectra. The structures of the new complexes have been described of analysis of elements, molar conductivity, (UV-Vis electronic, FTIR, mass) spectra also magnetic moment. The molar conductivity values of the complexes indicat this every of complexes are electrolytes and other analytical studies reveal octahedral geometry for La (III) ion. The Schiff base ligand, five
... Show MoreNew polydentate ligand namely bis(N-carboxylatoethyl)-0,0`-dipyridinium) L was synthesised from the reaction of 0,0`-dipyridine with ethyl chloropropionate. Polymeric complexes of general formulae [Cr2(L)(N3)0]Cl2.H2O, Na2[Ag2(L)(N3)0].H2O and [M2(L)(N3)0].nH2O, where (M= Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II); (where n = 2;1;1;1;4;1 and 1, respectively)) are reported. The mode of bonding and overall geometry of the complexes were determined through physico-chemical and spectroscopic methods. These studies revealed octahedral geometry complexes. Molecular structure for the complexes has been optimised by CS Chem 3D Ultra Molecular Modelling and Analysis Program and supported a six coordinate geometry.
Effluent from incompetent wastewater treatment plants (WWTPs) contains a great variety of pollutants so support water treatments are essential. The present work studies the removal of phosphate species from aqueous solutions by adsorption on to spherical Calcined Sand -Clay mixture (CSCM) used a natural, local and low-cost adsorbent. Batch experiments were performed to estimate removal efficiency of phosphate. The adsorption experiments were carried out as function of pH, dose of adsorbent, initial concentration, temperature and time of adsorption. The efficient removal was accomplished for pH between 10 and 12. The experimental results also showed that the removal of phosphate by (CSCM) was rapid (the % removal 98.9%, 92%, 90%, 89% in 6
... Show More