This study was conducted to detect the relationship between organic content in the sediment of Rivers Tigris and Diyala, at two locations south of Baghdad, with some environmental factors and the benthic invertebrates and values of diversity indices. Monthly samples collected from the area for the period November 2007 to October 2008. Results showed differences in the physical and chemical characteristics of the two sites, Where the annual average in Tigris and Diyala were respectively for: water temperature (19, 20) C°, pH (8, 8), dissolved oxygen (4, 8) mg / l , Biochemical oxygen Demand BOD5 (3,44 ) mg/l, TDS (632,1585) mg / l, TSS (42, 44) mg / l, turbidity (28,74) NTU, and total hardness as CaCO3 (485,823) mg / l ,Sulfate as SO4 ?(183,366),And finally nitrate as NO3 (4, 6) mg / l. Significant differences were found in the organic matter content as a percentage in the sediments of Diyala River for most months of the study period. Annual average of the percentage of organic matter in the samples of Tigris and Diyala Rivers were respectively: 0.7425 and 1.1375. The benthic groups included variety of benthic organisms; insects, Oligochaetes, Mollusks, and Crustaceans. Highest population density in Tigris River was for insects 31493 individual / m2, Mollusks 23177 individual / m2, Oligochaetes 10774 individual / m2, and Crusteacea 176 individual / m2 which were confined to Tigris River. In Diyala River highest population density was 9908, 18046, 82649 individual / m2 for Mollusks, Insects and Oligochaetes respectively. Values of diversity indices of benthic invertebrates were highest for species richness and equitability in Diyala River respectively, 18.6 and 8.29 in February, while lower values for species richness and equitability in Tigris River were respectively 1.56 and 3.31 in the same month. Most groups of invertebrate have shown significant positive and negative relationships with the physical and chemical and organic characteristics in both Rivers.
Due to the huge variety of 5G services, Network slicing is promising mechanism for dividing the physical network resources in to multiple logical network slices according to the requirements of each user. Highly accurate and fast traffic classification algorithm is required to ensure better Quality of Service (QoS) and effective network slicing. Fine-grained resource allocation can be realized by Software Defined Networking (SDN) with centralized controlling of network resources. However, the relevant research activities have concentrated on the deep learning systems which consume enormous computation and storage requirements of SDN controller that results in limitations of speed and accuracy of traffic classification mechanism. To fill thi
... Show MoreThis research deals with the qualitative and quantitative interpretation of Bouguer gravity anomaly data for a region located to the SW of Qa’im City within Anbar province by using 2D- mapping methods. The gravity residual field obtained graphically by subtracting the Regional Gravity values from the values of the total Bouguer anomaly. The residual gravity field processed in order to reduce noise by applying the gradient operator and 1st directional derivatives filtering. This was helpful in assigning the locations of sudden variation in Gravity values. Such variations may be produced by subsurface faults, fractures, cavities or subsurface facies lateral variations limits. A major fault was predicted to extend with the direction NE-
... Show MoreAccurate prediction of river water quality parameters is essential for environmental protection and sustainable agricultural resource management. This study presents a novel framework for estimating potential salinity in river water in arid and semi‐arid regions by integrating a kernel extreme learning machine (KELM) with a boosted salp swarm algorithm based on differential evolution (KELM‐BSSADE). A dataset of 336 samples, including bicarbonate, calcium, pH, total dissolved solids and sodium adsorption ratio, was collected from the Idenak station in Iran and was used for the modelling. Results demonstrated that KELM‐BSSADE outperformed models such as deep random vector funct
Free water surface constructed wetlands (FSCWs) can be used to complement conventional waste water treatment but removal efficiencies are often limited by a high ratio of water volume to biofilm surface area (i.e. high water depth). Floating treatment wetlands (FTWs) consist of floating matrices which can enhance the surface area available for the development of fixed microbial biofilms and provide a platform for plant growth (which can remove pollutants by uptake). In this study the potential of FTWs for ammoniacal nitrogen (AN) removal was evaluated using experimental mesocosms operated under steady-state flow conditions with ten different treatments (two water depths, two levels of FTW mat coverage, two different plant densities and
... Show MoreIn this study tungsten oxide and graphene oxide (GO-WO2.89) were successfully combined using the ultra-sonication method and embedded with polyphenylsulfone (PPSU) to prepare novel low-fouling membranes for ultrafiltration applications. The properties of the modified membranes and performance were investigated using Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), contact angle (CA), water permeation flux, and bovine serum albumin (BSA) rejection. It was found that the modified PPSU membrane fabricated from 0.1 wt.% of GO-WO2.89 possessed the best characteristics, with a 40.82° contact angle and 92.94% porosity. The permeation flux of the best membrane was the highest. The pure water permeation f
... Show More