Three strain of Bacillus cereus were obtained from soil sours Laboratories of Biology Department/ College of Science/ University of Baghdad. The bacteria secreted extracellular xylanase in liquid cultur the test ability of xylanase production from these isolates was studied semi quantitative and quantitative screening appeared that Bacillus cereus X3 was the highest xylanase producer. The enzyme was partial purification 191 fold from cultur by reached step by 4 U/mg proteins by ammonium sulfat precipitation 80%, Ion exchang DEAE-cellulos chromatography Characterization study of the partial purifation enzyme revealed that the enzyme had a optimum activity pH8 and activity was stable in the pH rang (8-10) for 30min. maximal activity was attained at 50C
In this study azo dye was prepared by the reaction of m-phenylendidiazonium chloride with methyl salicylate, the resultant compound was used as a ligand for complex formation with Fe+2, Cu+2, Zn+2, Ni+2 and Co+2 ions. The prepared ligand was characterized by H1NMR, UV-Vis., And FTIR spectroscopy, CHN analysis, in addition the complexes were characterized by TGA, UV-Vis., FTIR and conductivity methods. The results indicate that the ligand chelated through phenoxy and carboxyl groups as a O4 quadra dentate ligand, the Co complex complet its hexagon coordination by bonding with chlorine and the complex wouid be electrolytic in opposite with rest complexes.
Nanocomposites of polymer material based on CdS as filler
material and poly methyl methacrylate (PMMA) as host matrix have
been fabricated by chemical spray pyrolysis method on glass
substrate. CdS particles synthesized by co-precipitation route using
cadimium chloride and thioacetamide as starting materials and
ammonium hydroxide as precipitating agent. The structure is
examined by X-ray diffraction (XRD), the resultant film has
amorphous structure. The optical energy gap is found to be (4.5,
4.06) eV before and after CdS addition, respectively. Electrical
activation energy for CdS/PMMA has two regions with values of
0.079 and 0.433 eV.
Aceclofenac (AC) is an orally active phenyl acetic acid derivative, non-steroidal anti-inflammatory drug with exceptional anti-inflammatory, analgesic and antipyretic properties. It has low aqueous solubility, leading to slow dissolution, low permeability and inadequate bioavailability. The aim of the current study was to prepare and characterize AC-NS-based gel to enhance the dissolution rate and then percutaneous permeability. NS.s were prepared using solvent/antisovent precipitation method at different drug to polymer ratios (1:1, 1:2, and 1:3) using different polymers such as poly vinyl pyrrolidone (PVP-K25), hydroxy propyl methyl cellulose (HPMC-E5) and poloxamer® (388) as stabilizer
... Show MoreThe synthesis of complexes for (Ca+2, Co+2, Ni+2, Cu+2, Zn+2, Cd+2 and Hg+2) with new ligand (5-C-dimethyl malonyl-pentulose-γ-lactone-2,3-enedibenzoate) (L) have been successfully prepared and characterized by (1H and 13CNMR, FTIR, (U.V-Vis) spectroscopy, Atomic absorption spectrophotometer (A.A.s), Molar conductivity measurements and Magnetic moment measurements, and the following general formula has been given for the prepared complexes [M(L)Cl2] where M = (Ca+2, Co+2, Ni+2, Cu+2, Zn+2, Cd+2, Hg+2), L = (5-C-dimethyl malonyl-pentulose-γ-lactone-2,3-enedibenzoate).
New (pentulose-?-lactone-2,3-enedibenzoate barbituric acid) (L) have been synthesized by reaction of (5-C-dimethyl malonyl-pentulose-?-lactone-2,3-enedibenzoate) with urea in alkaline media (sodium methoxide). (Ca+2, Co+2, Ni+2, Cu+2, Zn+2, Cd+2 and Hg+2) complexes of (pentulose-?-lactone-2,3-enedibenzoate barbituric acid) (L) have been prepared and characterized by (1H and 13CNMR), FTIR, (U.V-Vis) spectroscopy, Atomic absorption spectrophotometer (A.A.S), Molar conductivity measurements and Magnetic moment measurements, and the following general formula has been given for the prepared complexes [MLCl2(H2O)].XH2O, where M = (Ca+2, Co+2, Ni+2, Cu+2, Zn+2, Cd+2, Hg+2), X = five molecules with (Cd+2) complex, L = (pentulose-?-lactone-2,3
... Show MoreIridoid glycosides are a group of naturally occurring chemical compounds. They are a large family of compounds biosynthesized by plants, they often have pharmacological effects. The aim of this study is to isolate and identified iridoid glycoside in a newly studied, cultivated in Iraq named Gardenis jasminoides. The medicinal importance of iridoid glycoside, on one hand and absence of phytochemical investigation on leaves of Gardenia on the other hand, acquired this study its importance. Many compounds were isolated from leaves plant part one of these compounds was identified by different chemical analysis like: melting point (MP), thin layer chromatography (TLC), Fourier transforms infrared spectra (FTIR) and high performance l
... Show MoreThe Sr doped La1Ba1-xSrx Ca2Cu4O8.5+δ samples with 0 ≤ x ≤ 0.3 had been prepared using the solid state reaction. The samples were claimed at 800°C for 3hr, palletized and sintered at 860°C for 20hr in air . Dielectric constant and loss by means of capacitance have been investigated with frequencies in the range of 1kHZ to 1MHZ for our samples at room temperature. Also, Shore hardness has been measured. The dielectric constant and loss decrease slightly with the increase of frequency for all compounds. Additionally, the partial substitution of Sr+2 into Ba+2 sites never have effect on the dielectric properties. X-ray diffraction (XRD) analysis showed a tetragonal structure and the
... Show MoreWe have synthesized many metal (II) complexes using curcumin L1 as the major ligand and 2-(1H-Benzimidazol-2-yl) aniline L2 as a supporting ligand. The complexes were characterized by spectroscopy methods such as; molar conductivity, elements microanalysis, Fourier-transform spectroscopy (FT-IR), UV-vis, and mass spectroscopy. Both curcumin ligands and L2 were found to be capable of binding to M(II) and metal ions via their two N atoms, according to the data. The formula for the complexes is the same. [M (L1)(L2)H2OCl], where M is Ni(II), Co(II), Cu(II), Cd(II), and Hg(II) (II). Octahedral complexes are proposed for the prepared compounds. The bio-actives suggested that the complexes are effective against bacteria and fungus on a mi
... Show More