The activity of Adhatoda vasica crude plants extracts against B.thuringiensis bacteria was determined by MIC test and sensitivity test which showed no response of this type of bacteria against extracts .The interference between the effect of hot and cold aqueous extracts and Bacillus thuringiensis bacteria for controlling the population of fig moth when males and females released before treatment under control condithion was gave a highly percentage of larval mortality which reached to 100% in (B.t. + hot aqueous extract ) and 97.3% in (B.t + coldaqueous extract ) after two weeks of treatment when concentration of 50% of aqueous extracts and 5×10?1of Bacillus thuringiensis bacteria but when the insect (males & females) released after the dates treated with B.t & hot aqueous extract , the mortality was 100% in all first instar larvae. The results also showed that when treatment of the dates before the insects released more influence than that treated the date after the insects released so the percentage of mortality of larvae reached to 100% in first method and to 86.0% in second methods .
Gas-lift technique plays an important role in sustaining oil production, especially from a mature field when the reservoirs’ natural energy becomes insufficient. However, optimally allocation of the gas injection rate in a large field through its gas-lift network system towards maximization of oil production rate is a challenging task. The conventional gas-lift optimization problems may become inefficient and incapable of modelling the gas-lift optimization in a large network system with problems associated with multi-objective, multi-constrained, and limited gas injection rate. The key objective of this study is to assess the feasibility of utilizing the Genetic Algorithm (GA) technique to optimize t
The investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutti
... Show MoreMyriophyllum spicatum distribution in Al-Burgga marsh, Hor Al-Hammar was described in relation to some of the physical-chemical properties for its habitat (water depth, light penetration, water temperature, water salinity, pH, dissolved oxygen, Ca+2, Mg+2, reactive NO2=, reactive NO3-1, and reactive PO4-3) during 2011, seasonally. CANOCO ordination program (CCA) was used to analyse the data. Its vegetation cover percentage was with its peak at summer, its value was 90 %, while the lowest value was 20 % in winter. Statistically, Positive relationships for WT, sal., Ca+2, Mg+2, reactive NO2=, reactive NO3-1, and reactive PO4-3 with the vegetation cover percentage were observed. While, negative relationships for WD, pH, and DO with the ve
... Show MoreBearing capacity of soil is an important factor in designing shallow foundations. It is directly related to foundation dimensions and consequently its performance. The calculations for obtaining the bearing capacity of a soil needs many varying parameters, for example soil type, depth of foundation, unit weight of soil, etc. which makes these calculation very variable–parameter dependent. This paper presents the results of comparison between the theoretical equation stated by Terzaghi and the Artificial Neural Networks (ANN) technique to estimate the ultimate bearing capacity of the strip shallow footing on sandy soils. The results show a very good agreement between the theoretical solution and the ANN technique. Results revealed that us
... Show MoreVisible-light photodetectors constructed Fe2O3 were manufactured effectively concluded chemical precipitation technique, films deposited on glass substrate and Si wafer below diverse dopant (0,2,4,6)% of Cl, enhancement in intensity with X-ray diffraction analysis was showed through favored orientation along the (110) plane, the optical measurement presented direct allowed with reduced band gap energies thru variation doping ratio , current–voltage characteristics Fe2O3 /p-Si heterojunction revealed respectable correcting performance in dark, amplified by way of intensity of incident light, moreover good photodetector properties with enhancement in responsivity occurred at wavelength between 400 nm and 470 nm.
Abstract
The problem of missing data represents a major obstacle before researchers in the process of data analysis in different fields since , this problem is a recurrent one in all fields of study including social , medical , astronomical and clinical experiments .
The presence of such a problem within the data to be studied may influence negatively on the analysis and it may lead to misleading conclusions , together with the fact that these conclusions that result from a great bias caused by that problem in spite of the efficiency of wavelet methods but they are also affected by the missing of data , in addition to the impact of the problem of miss of accuracy estimation
... Show MoreWith the development of cloud computing during the latest years, data center networks have become a great topic in both industrial and academic societies. Nevertheless, traditional methods based on manual and hardware devices are burdensome, expensive, and cannot completely utilize the ability of physical network infrastructure. Thus, Software-Defined Networking (SDN) has been hyped as one of the best encouraging solutions for future Internet performance. SDN notable by two features; the separation of control plane from the data plane, and providing the network development by programmable capabilities instead of hardware solutions. Current paper introduces an SDN-based optimized Resch
A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.