This study was designed to look for certain biochemical markers(serum uric acid and serum peroxynitrite) in women presented with obesity and to compare the level of these markers with non-obese women. A total number of 63 women were recruited from outpatients and private clinics to admit in this study. The patients were grouped into non obese women (Group I) and obese women (Group II). The anthropometric and blood pressure were determined and venous blood was obtained from each patient for determination of C-reactive protein, uric acid and peroxynitrite. The results showed that there were no significant differences in age or in concomitant or associated diseases in both groups except rheumatoid arthritis which account 80% of group I and 25% of group II. The body mass index of Group I patients was 25.27±4.19 kg/h2 compared with 40.03±16.64 kg/h2 of Group II (p < 0.001). There were no significant differences in waist to hip ratio between two groups. The means systolic and diastolic blood pressures were higher in Group II compare with Group I. Positive C-reactive protein was observed in 53.3% and 52.1% of patients in Groups I and II respectively. Serum uric acid and peroxynitrite were non-significantly higher in Group II compared with Group I. It was concluded that obesity in women is associated with increased level of metabolic and nitrosative markers as well as alteration in inflammatory marker.
In this paper, the botnet detection problem is defined as a feature selection problem and the genetic algorithm (GA) is used to search for the best significant combination of features from the entire search space of set of features. Furthermore, the Decision Tree (DT) classifier is used as an objective function to direct the ability of the proposed GA to locate the combination of features that can correctly classify the activities into normal traffics and botnet attacks. Two datasets namely the UNSW-NB15 and the Canadian Institute for Cybersecurity Intrusion Detection System 2017 (CICIDS2017), are used as evaluation datasets. The results reveal that the proposed DT-aware GA can effectively find the relevant features from
... Show MoreImplementation of TSFS (Transposition, Substitution, Folding, and Shifting) algorithm as an encryption algorithm in database security had limitations in character set and the number of keys used. The proposed cryptosystem is based on making some enhancements on the phases of TSFS encryption algorithm by computing the determinant of the keys matrices which affects the implementation of the algorithm phases. These changes showed high security to the database against different types of security attacks by achieving both goals of confusion and diffusion.
In this paper, the botnet detection problem is defined as a feature selection problem and the genetic algorithm (GA) is used to search for the best significant combination of features from the entire search space of set of features. Furthermore, the Decision Tree (DT) classifier is used as an objective function to direct the ability of the proposed GA to locate the combination of features that can correctly classify the activities into normal traffics and botnet attacks. Two datasets namely the UNSW-NB15 and the Canadian Institute for Cybersecurity Intrusion Detection System 2017 (CICIDS2017), are used as evaluation datasets. The results reveal that the proposed DT-aware GA can effectively find the relevant
... Show MoreBackground: In the past, an association between Tuberculosis (TB) and Diabetes Mellitus (DM) was widely accepted, today the potential public health and clinical importance of this relationship seems to be largely ignored. The national clinical and policy guidance in the UK on the central of TB, for example, does not consider the relationship with DM.Objectives: To determine the risk of association between diabetes mellitus and pulmonary TB.Methods: A retrospective study conducted in Ibn Zuhr hospital for chest diseases from Jan 2008 – sep 2010 , included in the study 402 patients with TB divided into diabetic & non diabetic, 96 (23.8%) were diabetic while other 306 were TB not diabetic.Results: Risk of TB among DM patients were cle
... Show MoreMany academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Deci
... Show MoreThis paper designed a fault tolerance for soft real time distributed system (FTRTDS). This system is designed to be independently on specific mechanisms and facilities of the underlying real time distributed system. It is designed to be distributed on all the computers in the distributed system and controlled by a central unit.
Besides gathering information about a target program spontaneously, it provides information about the target operating system and the target hardware in order to diagnose the fault before occurring, so it can handle the situation before it comes on. And it provides a distributed system with the reactive capability of reconfiguring and reinitializing after the occurrence of a failure.
Protein arginine methyltransferases (PRMTs) play important roles in transcription, splicing, DNA damage repair, RNA biology, and cellular metabolism. Thus, PRMTs have been attractive targets for various diseases. In this study, we reported the design and synthesis of a potent pan-inhibitor for PRMTs that tethers a thioadenosine and various substituted guanidino groups through a propyl linker. Compound II757 exhibits a half-maximal inhibition concentration (IC50) value of 5 to 555 nM for eight tested PRMTs, with the highest inhibition for PRMT4 (IC50 = 5 nM). The kinetic study demonstrated that II757 competitively binds at the SAM binding site of PRMT1. Notably, II757 is selective for PRMTs over a panel of other methyltransferases, w
... Show MoreSentiment Analysis is a research field that studies human opinion, sentiment, evaluation, and emotions towards entities such as products, services, organizations, events, topics, and their attributes. It is also a task of natural language processing. However, sentiment analysis research has mainly been carried out for the English language. Although the Arabic language is one of the most used languages on the Internet, only a few studies have focused on Arabic language sentiment analysis.
In this paper, a review of the most important research works in the field of Arabic text sentiment analysis using deep learning algorithms is presented. This review illustrates the main steps used in these studies, which include
... Show More