Copper oxide thin films were deposited on glass substrate using Successive Ionic Layer Adsorption and Reaction (SILAR) method at room temperature. The thickness of the thin films was around 0.43?m.Copper oxide thin films were annealed in air at (200, 300 and 400°C for 45min.The film structure properties were characterized by x-ray diffraction (XRD). XRD patterns indicated the presence of polycrystalline CuO. The average grain size is calculated from the X-rays pattern, it is found that the grain size increased with increasing annealing temperature. Optical transmitter microscope (OTM) and atomic force microscope (AFM) was also used. Direct band gap values of 2.2 eV for an annealed sample and (2, 1.5, 1.4) eV at 200, 300,400oC respectively.
Samarium ions (Sm +3), a rare-earth element, have a significant optical emission within the visible spectrum. PMMA samples, mixed with different ratios of SmCl3.6H2O, were prepared via the casting method. The composite was tested using UV-visible, photoluminescence and thermogravimetric analysis (TGA). The FTIR spectrometry of PMMA samples showed some changes, including variation in band intensity, location, and width. Mixed with samarium decreases the intensity of the CO and CH2 stretching bands and band position. A new band appeared corresponding to ionic bonds between samarium cations with negative branches in the polymer. These variations indicate complex links between the Sm +3 ion and oxygen in the ether group. The optical absorption
... Show MoreAn overall mathematical model for copper pipe corrosion in flowing water was derived based on mass transfer fundamentals where we introduced the effects of boundary layer velocity, bulk flow velocity and the surface oxide protective film on the corrosion rate. A set of experiments were conducted in a straight 10mm diameter copper pipe, flow of water include six velocities of maximum value 7.33m/sec at 200C and 350C. The good agreement between the calculated and experimental corrosion rate values were achieved , the agreement reached 92% .
A comparative investigation of gas sensing properties of SnO2 doped with WO3 based on thin film and bulk forms was achieved. Thin films were deposited by thermal evaporation technique on glass substrates. Bulk sensors in the shape of pellets were prepared by pressing SnO2:WO3 powder. The polycrystalline nature of the obtained films with tetragonal structure was confirmed by X-ray diffraction. The calculated crystalline size was 52.43 nm. Thickness of the prepared films was found 134 nm. The optical characteristics of the thin films were studied by using UV-VIS Spectrophotometer in the wavelength range 200 nm to 1100 nm, the energy band gap, extinction coefficient and refractive index of the thin film were 2.5 eV , 0.024 and 2.51, respective
... Show MoreIn this work copper nanopowder was created at different liquid
medias like DDDW, ethylene glycol and Polyvinylpyrrolidone
(PVP). Copper nanopowder prepared using explosion wire process
and investigated the effects of the exploding energy, wire diameter,
the type of liquid on the particle size, and the particles size
distribution. The nanoparticles are characterized by x-ray diffraction,
UV-visible absorption spectroscopy and transmission electron
microscopy (TEM). The x-ray diffraction results reveal that the
nanoparticles continue to routine lattice periodicity at reduced
particle size. The UV-Visible absorption spectrum of liquid solution
for copper nanoparticles shows sharp and single surface Plasmon
r
Copper tin sulfide (Cu2SnS3) thin films have been grown on glass
substrate with different thicknesses (500, 750 and 1000) nm by flash
thermal evaporation method after prepare its alloy from their
elements with high purity. The as-deposited films were annealed at
473 K for 1h. Compositional analysis was done using Energy
dispersive spectroscopy (EDS). The microstructure of CTS powder
examined by SEM and found that the large crystal grains are shown
clearly in images. XRD investigation revealed that the alloy was
polycrystalline nature and has cubic structure with preferred
orientation along (111) plane, while as deposited films of different
thickness have amorphous structure and converted to polycrystalline
Thin films of iridium doped indium oxide (In2O3:Eu)with different doping ratio(0,3,5,7,and 9%) are prepared on glass and single crystal silicon wafer substrates using spray pyrolysis method. The goal of this research is to investigate the effect of doping ratio on of the structural, optical and sensing properties . The structure of the prepared thin films was characterized at room temperature using X-ray diffraction. The results showed that all the undoped and doped (In2O3:Eu)samples are polycrystalline in structure and nearly stoichiometric. UV-visible spectrophotometer in the wavelength range (200-1100nm)was used to determine the optical energy gap and optical constants. The optical transmittance of 83% and the optical band gap of 5.2eV
... Show MoreThe electrical properties of the AlNiCo thin films with thickness (1000oA) deposited on glass substrates using Ion – Beam sputtering (IBS) technique under vacuum <10-6 torr have been studied . Also it studied the effect of annealing temperature from this films , It is found that the effective energy decrease with increase of temperature and the conductivity decrease with increase temperature 323oK but after this degree the conductivity increasing .
Oil well drilling fluid rheology, lubricity, swelling, and fluid loss control are all critical factors to take into account before beginning the hole's construction. Drilling fluids can be made smoother, more cost-effective, and more efficient by investigating and evaluating the effects of various nanoparticles including aluminum oxide (Al2O3) and iron oxide (Fe2O3) on their performance. A drilling fluid's performance can be assessed by comparing its baseline characteristics to those of nanoparticle (NPs) enhanced fluids. It was found that the drilling mud contained NPs in concentrations of 0,0.25, 0. 5, 0.75 and 1 g. According to the results, when drilling fluid was used without NPs, the coeff
... Show MoreThis work describes the effect of temperature on the phase transformation of titanium dioxide (TiO2) prepared using metal organic precursors as starting materials. X-ray diffraction (XRD) was used to investigate the structural properties of TiO2 gels calcined at different temperatures (300, 500, 700) ?C. the results showed that the samples have typical peaks of TiO2 polycrystalline brookite nanopowders after calcined at (300 ?C), which confirmed by (111), (121), (200), (012), (131), (220), (040), (231), (132) and (232) diffraction peaks. Also, XRD diffraction spectra showed the presence of crystallites of anatase with low proportion of rutile phase where calcined at (500 ?C), while rutile phase domains at (700 ?C). The crystallite size of
... Show More