Thin films of (Cu2S)100-x( SnS2 )x at X=[ 30,40, &50)]% with thickness (0.9±0.03)µm , had been prepared by chemical spray pyrolysis method on glass substrates at 573 K. These films were then annealed under low pressure of(10-2) mbar ,373)423&473)K for one hour . This research includes , studying the the optical properties of (Cu2S)100-x-(SnS2)x at X=[ 30,40, &50)]% .Moreover studying the effect of annealing on their optical properties , in order to fabricate films with high stability and transmittance that can be used in solar cells. The transmittance and absorbance spectra had been recorded in the wavelength range (310 - 1100) nm in order to study the optical properties . It was found that these films had direct optical band gap which decreases with the increasing SnS2 ratio , while it increasing with the increase in the annealing temperature at all ratio
Autorías: Wafaa Sabah Mohammed Al-Khafaji, Fatimah Hameed Kzar Al-Masoodi, Suadad Ibrahim Suhail Al-Kinani. Localización: Revista iberoamericana de psicología del ejercicio y el deporte. Nº. 3, 2023. Artículo de Revista en Dialnet.
Background: In this study we evaluate the effect of plasma treatment (oxygen and argon) gas in two different exposure times on the surface of heat cure and light cure acrylic resin. Materials and method: 100 specimens of heat cure and light cure acrylic resin were fabricated. The measurements of the samples were (75mm, 25mm and 4.5mm) length, width and depth respectively with stopper of 3mm depth. Two types of gas used oxygen and argon in (5,10) min by using (DC-glow discharge plasma device) then we apply cold cure soft lining material, with the help of Instron machine we test the shear stress value. Results: A highly significant effect after argon and oxygen gases treatment in both 5 and 10 min exposure times on shear bond strength to soft
... Show MoreThis research aims to identify the role of external environment factors on the quality of educational services, from the academic point of view, where the distribution of a questionnaire to a random sample of (100) university professors, and then analyzing a model, and test the validity of this model using structural modeling (SEM) (Structural Equation Modeling).
And then test the relationships between variables using the software of Statistical Package for Social Sciences (SPSS V.18), the research found a number of conclusions, the most important conclusion is: the external environment factors has significant impact on the quality of educational services.
The influence of sensing element length of no-core fiber strain sensor has been studied and experimentally demonstrated, four different lengths of 125 μm diameter no-core fiber is fused between two standard single-mode fibers and bi-directionally strained, the highest obtained sensitivity was around 16.37 pm με -1 which was exhibited in the shortest no-core fiber segment, to the best of our knowledge this is the first study of the influence of no-core fiber strain sensors length on sensor sensitivity. The proposed sensor can be used in many opto-mechanical applications such as, structural health monitoring, aerospace vehicles and airplane components monitoring.
This study was conducted at the Poultry Research Station of the Agricultural Research Department/Ministry of Agriculture in Abu Ghraib for the period from 25/2/2019 to 7/4/2019 (42 days) with the aim of using several levels of Spirulina (SP)
The main objective of this research is to design and select a composite plate to be used in fabricating wing skins of light unman air vehicle (UAV). The mechanical properties, weight and cost are the basis criteria of this selection. The fiber volume fraction, fillers and type of fiber with three levels for each were considered to optimize the composite plate selection. Finite element method was used to investigate the stress distribution on the wing at cruise flight condition in addition to estimate the maximum stress. An experiments plan has been designed to get the data on the basis of Taguchi technique. The most effective parameters at the process to be find out by employing L9
... Show MoreThe microstructure and wear properties of 392 Al alloy with different Mg contents were studied using centrifugal casting. All melted alloys were heated to 800 ºC and poured into the preheated centrifugal casting mold (200-250 ºC) at different mould rotational speeds (1500, 1900 and 2300 r.p.m). It is clear from the results obtained that wear rate was dependent on the Mg content, applied load and mould rotational speed. Furthermore, wear test showed that the minimum wear rate was found in the inner layer of produced rings at mould rotational speed of 1900 r.p.m and Mg content of 5%.
Petrophysical characterization is the most important stage in reservoir management. The main purpose of this study is to evaluate reservoir properties and lithological identification of Nahr Umar Formation in Nasiriya oil field. The available well logs are (sonic, density, neutron, gamma-ray, SP, and resistivity logs). The petrophysical parameters such as the volume of clay, porosity, permeability, water saturation, were computed and interpreted using IP4.4 software. The lithology prediction of Nahr Umar formation was carried out by sonic -density cross plot technique. Nahr Umar Formation was divided into five units based on well logs interpretation and petrophysical Analysis: Nu-1 to Nu-5. The formation lithology is mainly
... Show More