Preferred Language
Articles
/
bsj-2638
Determination Oxidant - Antioxidant Enzyme and some Trace Elements in Breast Cancer in Baghdad City
...Show More Authors

level of effectiveness of Glutathione - S - Transferees (GST), Glutathione peroxides (GPX),Malondialdehyde (MDA) the product of lipid peroxidation and some trace elements ( zinc,seleinum,iron ,copper ) had been measured in sera of (50) women with breast disease.which had been divided to : Control group (25),The first group (A) benign breast tumors (25),the second group (B) breast cancer (25). The results showed a clear moral high level of Glutathione - S - Transferees (GST), Glutathione peroxidase (GPX) , and Malondialdehyde (MDA) level in breast cancer group while a slight increase were observed in the levels of these enzymes and(MDA) in benign breast group. A significant reduction was evident in the levels of selenium and zinc when compared with the control group while there were an increase in levels of sera copper , iron in the breast cancer group. As in (tissue) group of breast cancer found a rise in the level of selenium, zinc, copper, iron, compared with (serum) of breast cancer.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jan 06 2022
Journal Name
Chemical Papers
A solvent collection technique using dispersive liquid–liquid microextraction coupled with spectrophotometry for the trace determination of folic acid in pure, dosage forms and flaxseed
...Show More Authors

A simple, rapid and environmentally friendly dispersive liquid–liquid microextraction method-based spectrophotometric method for the trace determination of folic acid has been developed. The proposed method is based on the formation of a deep yellow product via reaction of folic acid and 1,2-naphthoquine-4-sulfonate at pH = 9. The formed complex was extracted using a mixture of chloroform and ethanol. Then, the tiny organic droplets were measured at λ = 520 nm. At the optimum conditions, linearity was ranged from 0.05 to 1.5 μg/mL for the standard and samples, with a linear correlation coefficient of 0.9996. The detection limits were 0.02, 0.027, 0.03, 0.02 and 0.04 μg/mL for standard, tablet (5 mg), tablet (1 mg), syrup and fl

... Show More
View Publication
Scopus (5)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Fri Oct 01 2021
Journal Name
Journal Of Al-rafidain University College For Sciences ( Print Issn: 1681-6870 ,online Issn: 2790-2293 )
The Use of Logistic Regression Model in Estimating the Probability of Being Affected By Breast Cancer Based On the Levels of Interleukins and Cancer Marker CA15-3
...Show More Authors

Breast cancer has got much attention in the recent years as it is a one of the complex diseases that can threaten people lives. It can be determined from the levels of secreted proteins in the blood. In this project, we developed a method of finding a threshold to classify the probability of being affected by it in a population based on the levels of the related proteins in relatively small case-control samples. We applied our method to simulated and real data. The results showed that the method we used was accurate in estimating the probability of being diseased in both simulation and real data. Moreover, we were able to calculate the sensitivity and specificity under the null hypothesis of our research question of being diseased o

... Show More
View Publication
Publication Date
Thu Dec 01 2022
Journal Name
Iaes International Journal Of Artificial Intelligence
Reduced hardware requirements of deep neural network for breast cancer diagnosis
...Show More Authors

Identifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Fri Apr 26 2019
Journal Name
Journal Of Contemporary Medical Sciences
Breast Cancer Decisive Parameters for Iraqi Women via Data Mining Techniques
...Show More Authors

Objective This research investigates Breast Cancer real data for Iraqi women, these data are acquired manually from several Iraqi Hospitals of early detection for Breast Cancer. Data mining techniques are used to discover the hidden knowledge, unexpected patterns, and new rules from the dataset, which implies a large number of attributes. Methods Data mining techniques manipulate the redundant or simply irrelevant attributes to discover interesting patterns. However, the dataset is processed via Weka (The Waikato Environment for Knowledge Analysis) platform. The OneR technique is used as a machine learning classifier to evaluate the attribute worthy according to the class value. Results The evaluation is performed using

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Sep 21 2024
Journal Name
Asian Pacific Journal Of Cancer Prevention
Oncolytic Newcastle Disease Virus and Photodynamic Therapy as Dual Approach for Breast Cancer Treatment
...Show More Authors

Objective: We hypothesized that attacking cancer cells by combining various modes of action can hinder them from taking the chance to evolve resistance to treatment. Incorporation of photodynamic therapy (PDT) with oncolytic virotherapy might be a promising dual approach to cancer treatment. Methods: NDV AMHA1 strain as virotherapy in integration with aminolaevulinic acid (ALA) using low power He-Ne laser as PDT in the existing work was examined against breast cancer cells derived from Iraqi cancer patients named (AMJ13). This combination was evaluated using Chou–Talalay analysis. Results: The results showed an increased killing rate when using both 0.01 and 0.1 Multiplicity of infection (MOI) of the virus when combined with a dose of 617

... Show More
View Publication
Scopus Crossref
Publication Date
Fri May 25 2018
Journal Name
Open Public Health Journal
Comparative Study on the Clinicopathological Profiles of Breast Cancer Among Iraqi and British Patients
...Show More Authors

Background: Breast cancer is the most common cancer in Iraq and the United Kingdom. While the disease is frequently diagnosed among middleaged Iraqi women at advanced stages accounting for the second cause of cancer-related deaths, breast cancer often affects elderly British women yielding the highest survival of all registered malignancies in the UK. Objective: To compare the clinical and pathological profiles of breast cancer among Iraqi and British women; correlating age at diagnosis with the tumor characteristics, receptor-defined biomarkers and phenotype patterns. Methods: This comparative retrospective study included the clinical and pathological characteristics of (1,940) consecutive female patients who were diagnosed with invasive b

... Show More
View Publication Preview PDF
Scopus (34)
Crossref (15)
Scopus Crossref
Publication Date
Mon Feb 01 2021
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Comparative study of logistic regression and artificial neural networks on predicting breast cancer cytology
...Show More Authors

<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver ope

... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
Breast Cancer MRI Classification Based on Fractional Entropy Image Enhancement and Deep Feature Extraction
...Show More Authors

Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature

... Show More
View Publication Preview PDF
Scopus (29)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Fri Dec 24 2021
Journal Name
Oncology And Radiotherapy
The effect of different clinicopathological parameters on disease free survival in triple negative breast cancer Iraqi women
...Show More Authors

Scopus (1)
Scopus
Publication Date
Tue Jun 25 2024
Journal Name
World Academy Of Sciences Journal
Expression of programmed death ligand 1 in patients with triple‑negative breast cancer: Association with clinicopathological parameters
...Show More Authors

The utilization of targeted therapy for programmed death ligand 1 (PD‑L1) has emerged as a prominent focus in contemporary clinical trials, particularly in the context of immune checkpoint inhibitors. The prognostic significance of the expression of PD‑L1 in invasive mammary cancer remains a subject of discussion in clinical oncology, requiring further exploration, despite its recognition as a biomarker for responsiveness to anti‑PDL1 immunotherapy. The present study was conducted to investigate the immunohistological expression of PD‑L1 in women with triple‑negative breast cancer (TNBC), with a particular focus for searching for the associated clinical and pathological characteristics. The present retrospective study examined the

... Show More
View Publication Preview PDF
Scopus Crossref