Our aim in this paper is to study the relationships between min-cs modules and some other known generalizations of cs-modules such as ECS-modules, P-extending modules and n-extending modules. Also we introduce and study the relationships between direct sum of mic-cs modules and mc-injectivity.
Let R be a commutative ring with unity. In this paper we introduce and study fuzzy distributive modules and fuzzy arithmetical rings as generalizations of (ordinary) distributive modules and arithmetical ring. We give some basic properties about these concepts.
Urban morphological approach (concepts and practices) plays a significant role in forming our cities not only in terms of theoretical perspective but also in how to practice and experience the urban form structures over time. Urban morphology has been focused on studying the processes of formation and transformation of urban form based on its historical development. The main purpose of this study is to explore and describe the existing literature of this approach and thus aiming to summarize the most important studies that put into understanding the city form. In this regard, there were three schools of urban morphological studies, namely: the British, the Italian, and the French School. A reflective comparison between t
... Show MoreHS Saeed, SS Abdul-Jabbar, SG Mohammed, EA Abed, HS Ibrahem, Solid State Technology, 2020
Many studies of the relationship between COVID-19 and different factors have been conducted since the beginning of the corona pandemic. The relationship between COVID-19 and different biomarkers including ABO blood groups, D-dimer, Ferritin and CRP, was examined. Six hundred (600) patients, were included in this trial among them, 324 (56%) females and the rest 276 (46%) were males. The frequencies of blood types A, B, AB, and O were 25.33, 38.00, 31.33, and 5.33%, respectively, in the case group. Association analysis between the ABO blood group and D-dimer, Ferritin and CRP of COVID-19 patients indicated that there was a statistically significant difference for Ferritin (P≤0.01), but no-significant differences for both D-dimer and CRP.
... Show MoreIn this paper, the concept of fully stable Banach Algebra modules relative to an ideal has been introduced. Let A be an algebra, X is called fully stable Banach A-module relative to ideal K of A, if for every submodule Y of X and for each multiplier ?:Y?X such that ?(Y)?Y+KX. Their properties and other characterizations for this concept have been studied.
The duo module plays an important role in the module theory. Many researchers generalized this concept such as Ozcan AC, Hadi IMA and Ahmed MA. It is known that in a duo module, every submodule is fully invariant. This paper used the class of St-closed submodules to work out a module with the feature that all St-closed submodules are fully invariant. Such a module is called an Stc-duo module. This class of modules contains the duo module properly as well as the CL-duo module which was introduced by Ahmed MA. The behaviour of this new kind of module was considered and studied in detail,for instance, the hereditary property of the St-duo module was investigated, as the result; under certain conditions, every St-cl
... Show MoreTests were performed on Marshall samples and were implemented for permanent deformation and resilient modulus (Mr) under indirect tensile repeated loading (ITRL), with constant stress level. Two types of liquid asphalt (cutback and emulsion) were tried as recycling agents, aged materials that were reclaimed from field (100% RAP), samples were prepared from the aged mixture, and two types of liquid asphalt (cutback and emulsion) with a weight content of 0.5% were utilized to prepare a recycled mixture. A group of twelve samples was prepared for each mixture; six samples were tested directly for ITRL test (three samples at 25˚C and three samples at 40˚C), an average value for ITRL for every three samples was calculated (
... Show MoreIn this paper the full stable Banach gamma-algebra modules, fully stable Banach gamma-algebra modules relative to ideal are introduced. Some properties and characterizations of these classes of full stability are studied.
Abstract In this work we introduce the concept of approximately regular ring as generalizations of regular ring, and the sense of a Z- approximately regular module as generalizations of Z- regular module. We give many result about this concept.