Preferred Language
Articles
/
bsj-2622
Solution of Second Kind Volterra Integral Equations Using Non-Polynomial Spline Functions
...Show More Authors

In this paper we use non-polynomial spline functions to develop numerical methods to approximate the solution of 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of these method, and to compare the computed results with other known methods.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Nov 01 2022
Journal Name
Baghdad Science Journal
Effect of Secondary Metabolite Crude of Metarhizum anisopliea Fungus on the Second Larval Stage of the Housefly Musca domestica
...Show More Authors

.

Publication Date
Wed Jan 01 2020
Journal Name
Desalination And Water Treatment
Combination of the artificial neural network and advection-dispersion equation for modeling of methylene blue dye removal from aqueous solution using olive stones as reactive bed
...Show More Authors

Scopus (14)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Sun Feb 28 2021
Journal Name
Journal Of Electrochemical Science And Technology
Simultaneous Removal of Cadmium and Copper from a Binary Solution by Cathodic Deposition Using a Spiral-Wound Woven Wire Meshes Packed Bed Rotating Cylinder Electrode
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu Nov 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Multistage and Numerical Discretization Methods for Estimating Parameters in Nonlinear Linear Ordinary Differential Equations Models.
...Show More Authors

Many of the dynamic processes in different sciences are described by models of differential equations. These models explain the change in the behavior of the studied process over time by linking the behavior of the process under study with its derivatives. These models often contain constant and time-varying parameters that vary according to the nature of the process under study in this We will estimate the constant and time-varying parameters in a sequential method in several stages. In the first stage, the state variables and their derivatives are estimated in the method of penalized splines(p- splines) . In the second stage we use pseudo lest square to estimate constant parameters, For the third stage, the rem

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jul 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Continuous Classical Boundary Optimal Control Vector Governing by Triple Linear Partial Differential Equations of Parabolic Type
...Show More Authors

In this paper, the continuous classical boundary optimal control problem (CCBOCP) for triple linear partial differential equations of parabolic type (TLPDEPAR) with initial and boundary conditions (ICs & BCs) is studied. The Galerkin method (GM) is used to prove the existence and uniqueness theorem of the state vector solution (SVS) for given continuous classical boundary control vector (CCBCV). The proof of the existence theorem of a continuous classical boundary optimal control vector (CCBOCV) associated with the TLPDEPAR is proved. The derivation of the Fréchet derivative (FrD) for the cost function (CoF) is obtained. At the end, the theorem of the necessary conditions for optimality (NCsThOP) of this problem is stated and prov

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Buckling Analysis Of Damaged Composite Plates Under Uniform Or Non-Uniform Compressive Load
...Show More Authors

The present study focused mainly on the buckling behavior of composite laminated plates subjected to mechanical loads. Mechanical loads are analyzed by experimental analysis, analytical analysis (for laminates without cutouts) and numerical analysis by finite element method (for laminates with and without cutouts) for different type of loads which could be uniform or non-uniform, uniaxial or biaxial. In addition to many design parameters of the laminates such as aspect ratio, thickness ratio, and lamination angle or the parameters of the cutout such as shape, size, position, direction, and radii rounding) which are changed to studytheir effects on the buckling characteristics with various boundary conditions. Levy method of classical lam

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Apr 13 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solution of 2nd Order Nonlinear Three-Point Boundary Value Problems By Semi-Analytic Technique
...Show More Authors

    In this paper, we present new algorithm for the solution of the second order nonlinear three-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions which are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of three point boundary value problems.

View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Solution of Nonlinear High Order Multi-Point Boundary Value Problems By Semi-Analytic Technique
...Show More Authors

In this paper, we present new algorithm for the solution of the nonlinear high order multi-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of multi- point boundary value problems.

View Publication Preview PDF
Crossref
Publication Date
Wed Jul 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A new technique for solving fractional nonlinear equations by sumudu transform and adomian decomposition method
...Show More Authors

A novel technique Sumudu transform Adomian decomposition method (STADM), is employed to handle some kinds of nonlinear time-fractional equations. We demonstrate that this method finds the solution without discretization or restrictive assumptions. This method is efficient, simple to implement, and produces good results. The fractional derivative is described in the Caputo sense. The solutions are obtained using STADM, and the results show that the suggested technique is valid and applicable and provides a more refined convergent series solution. The MATLAB software carried out all the computations and graphics. Moreover, a graphical representation was made for the solution of some examples. For integer and fractional order problems, solutio

... Show More
Publication Date
Wed Jul 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A new Technique For Solving Fractional Nonlinear Equations By Sumudu Transform and Adomian Decomposition Method
...Show More Authors

A novel technique Sumudu transform Adomian decomposition method (STADM), is employed to handle some kinds of nonlinear time-fractional equations. We demonstrate that this method finds the solution without discretization or restrictive assumptions. This method is efficient, simple to implement, and produces good results. The fractional derivative is described in the Caputo sense. The solutions are obtained using STADM, and the results show that the suggested technique is valid and applicable and provides a more refined convergent series solution. The MATLAB software carried out all the computations and graphics. Moreover, a graphical representation was made for the solution of some examples. For integer and fractional order problems, solu

... Show More
View Publication Preview PDF
Crossref (2)
Crossref