In this paper we use non-polynomial spline functions to develop numerical methods to approximate the solution of 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of these method, and to compare the computed results with other known methods.
In this study, a new technique is considered for solving linear fractional Volterra-Fredholm integro-differential equations (LFVFIDE's) with fractional derivative qualified in the Caputo sense. The method is established in three types of Lagrange polynomials (LP’s), Original Lagrange polynomial (OLP), Barycentric Lagrange polynomial (BLP), and Modified Lagrange polynomial (MLP). General Algorithm is suggested and examples are included to get the best effectiveness, and implementation of these types. Also, as special case fractional differential equation is taken to evaluate the validity of the proposed method. Finally, a comparison between the proposed method and other methods are taken to present the effectiveness of the proposal meth
... Show MoreThe main objective of this research is to use the methods of calculus ???????? solving integral equations Altbataah When McCann slowdown is a function of time as the integral equation used in this research is a kind of Volterra
In this paper, we focus on designing feed forward neural network (FFNN) for solving Mixed Volterra – Fredholm Integral Equations (MVFIEs) of second kind in 2–dimensions. in our method, we present a multi – layers model consisting of a hidden layer which has five hidden units (neurons) and one linear output unit. Transfer function (Log – sigmoid) and training algorithm (Levenberg – Marquardt) are used as a sigmoid activation of each unit. A comparison between the results of numerical experiment and the analytic solution of some examples has been carried out in order to justify the efficiency and the accuracy of our method.
... Show More
Analysis the economic and financial phenomena and other requires to build the appropriate model, which represents the causal relations between factors. The operation building of the model depends on Imaging conditions and factors surrounding an in mathematical formula and the Researchers target to build that formula appropriately. Classical linear regression models are an important statistical tool, but used in a limited way, where is assumed that the relationship between the variables illustrations and response variables identifiable. To expand the representation of relationships between variables that represent the phenomenon under discussion we used Varying Coefficient Models
... Show MoreIn this paper, the delay integral equations in population growth will be described,discussed , studied and transfered this model to integro-differential equation. At last,we will solve this problem by using variational approach.
The aim of this paper is to propose a reliable iterative method for resolving many types of Volterra - Fredholm Integro - Differential Equations of the second kind with initial conditions. The series solutions of the problems under consideration are obtained by means of the iterative method. Four various problems are resolved with high accuracy to make evident the enforcement of the iterative method on such type of integro differential equations. Results were compared with the exact solution which exhibits that this technique was compatible with the right solutions, simple, effective and easy for solving such problems. To evaluate the results in an iterative process the MATLAB is used as a math program for the calculations.
In this paper, the Decomposition method was used to find approximation solutions for a system of linear Fredholm integral equations of the second kind. In this method the solution of a functional equations is considered as the sum of an infinite series usually converging to the solution, and Adomian decomposition method for solving linear and nonlinear integral equations. Finally, numerical examples are prepared to illustrate these considerations.
In this paper, the construction of Hermite wavelets functions and their operational matrix of integration is presented. The Hermite wavelets method is applied to solve nth order Volterra integro diferential equations (VIDE) by expanding the unknown functions, as series in terms of Hermite wavelets with unknown coefficients. Finally, two examples are given
In this paper a modified approach have been used to find the approximate solution of ordinary delay differential equations with constant delay using the collocation method based on Bernstien polynomials.