Bentonite is widely used in industrial applications. The present study reports the effect of adding different weights of ZnO to the Iraqi bentonite, on surface area, pore volume and real density. These surface properties were evaluated for pure and modified bentonite. The modification was made by adding different ZnO weights such as; ( 0.5%, 1%, 5%, 10% ). The effect of heat exposing for all modified clay samples at 500 ?C have been also evaluated. The results show that the addition of 0.5% ZnO leads to increase the surface area percentage about 36%, increase pore volume percentage about 5.48% and increase the real density percentage about 27.116%. When the samples exposed to 500 ?C, their surface area and pore volumes have been decreased and the real density increased in compared with non-heat exposed samples.
EP/ metal composites were prepared as adhesives between two steel rods. Epoxy resin (EP) was used as a matrix with metal as fillers (Al, Cu, Fe,).
The preparation method for tensile adhesion tests includes two steel rods with adhesive composites between the rods to measure adhesion strength Sad and adhesion toughness Gad.
Results of tensile adhesion tests show that EP/ metals composite have maximum strength Sad for certain weight percentage of metals 2.95 and 9MPa at 10% for EP/Al and EP/Cu composite and 8.2MPa at 40% for EP/Fe composites
CuInSe2 (CIS)thin films have been prepared by use vacuum thermal evaporation technique, of 750 nm thickness, with rate of deposition 1.8±0.1 nm/sec on glass substrate at room temperature and pressure (10-5) mbar. Heat treatment has been carried out in the range (400-600) K for all samples. The optical properties of the CIS thin films are been studied such as (absorption coefficient, refractive index, extinction coefficient, real and imaginary dielectric constant)by determined using Measurement absorption and transmission spectra. Results showed that through the optical constants we can made to control it is wide applications as an optoelectronic devices and photovoltaic applications.
This study is concerned with the effect of Deep Cryogenic Treatment (DCT) at liquid nitrogen temperature (-196 o C) on the mechanical properties and performance of low carbon steel (A858). The tests specimens were divided in to two groups, the first group was subjected to the conventional heat treatment of normalizing, and the second group was also normalized then subjected to (DCT). The results have shown that after (DCT), the Hardness, Tensile properties and the impact energy absorbed were all slightly increased. However the fatigue test showed some positive improvement in fatigue limit by 20(N/mm2 ), and the volume wear rates at different loads were significantly decreased after (DCT). The changes in microstructure due to (DCT) were c
... Show MoreSheets of Epoxy (EP) resin with addition of TiO2 of grain size (1.5μm, and 50nm) and weight percentage (1%, 3%, and 5%) were prepared. Discs of 20mm diameter and 3mm thickness were cut for dielectric measurements. Dielectric properties (dielectric constant, dispassion factor and electrical conductivity) over the frequency range 102 -106 Hz were measured.
Comparison was made between the effect of micro and nano particles of TiO2 on the dielectric properties of EP composites with different weight percentage. Epoxy composites with micro sized particles of TiO2 were observed to have the better values of dielectric properties.
Semiconductor-based metal oxide gas detector of five mixed from zinc chloride Z and tin chloride S salts Z:S ratio 0, 25, 50, 75 and 100% were fabricated on glass substrate by a spray pyrolysis technique. With thickness were about 0.2 ±0.05 μm using water soluble as precursors at a glass substrate temperature 500 ºC±5, 0.05 M, and their gas sensing properties toward CH4, LPG and H2S gas at different concentration (10, 100, 1000 ppm) in air were investigated at room temperature which related with the petroleum refining industry.
Furthermore structural and morphology properties were scrutinize. Results shows that the mixing ratio affect the composition of formative oxides were (ZnO, Zn2SnO4, Zn2SnO4+ZnSnO3, ZnSnO3, SnO2) ratios ment
The objective of this study is to demonstrate the corrosion behavior of dental alloys Co-Cr-Mo, Ni-Cr-Mo and Ti-Al-V in artificial saliva at pH=4 and 37oC enriched with ethyl alcohol at 8% percentage. The linear and cyclic polarizations were investigated by electrochemical measurements. Laser surface modification was achieved for the three dental alloys to improve corrosion resistance. The results show that corrosion resistance of Co-Cr-Mo and Ni-Cr-Mo alloys only were increased after laser treatment due to the fact that laser radiation has caused a smoother surface, in addition to the decrement in corrosion current densities (icorr) for Co-Cr-Mo and Ni-Cr-Mo alloys and the reverse scan in cyclic polarization became in the wider range of
... Show MoreThe experiment was conducted to study the effect of
antigibberellin Cultar , Ethephon and GA3 at concentration of (5,15,25 ppm) on surface growth of Rhizoctiona solani and Fusraium oxysporum . The results indicated that Cultar (15 , 25 ppm) decreased the surface growth of both fungi . Ethephon of the same concent
... Show MoreIraqi calcium bentonite was activated via acidification to study its structural and electrical properties. The elemental analysis of treated bentonite was determined by using X-ray fluorescence while the unit crystal structure was studied through X-ray diffraction showing disappearance of some fundamental reflections due to the treatment processes. The surface morphology, on the other hand, was studied thoroughly by Scanning Electron microscopy SEM and Atomic Force Microscope AFM showing some fragments of montmorillonite sheets. Furthermore, the electrical properties of bentonite were studied including: The dielectric permittivity, conductivity, tangent loss factor, and impedance with range of frequency (0.1-1000 KHz) at different temperatu
... Show MoreThe effect of different doping ratio (0.3, 0.5, and 0.7) with thickness in the range 300nmand annealed at different temp.(Ta=RT, 473, 573, 673) K on the electrical conductivity and hall effect measurements of AgInTe2thin film have and been investigated AgAlxIn(1-x) Te2 (AAIT) at RT, using thermal evaporation technique all the films were prepared on glass substrates from the alloy of the compound. Electrical conductivity (σ), the activation energies (Ea1, Ea2), Hall mobility and the carrier concentration are investigated as a function of doping. All films consist of two types of transport mechanisms for free carriers. The activation energy (Ea) decreased whereas electrical conductivity increases with increased doping. Results of Hall Effect
... Show More