Multiple studies support a role for inflammation in the pathogenesis of coronary atherosclerosis and unstable cardiac syndromes. However, of the known pro-inflammatory cytokines, only elevated plasma levels of interleukin-6(IL-6) have been linked to Unstable Angina. We sought to examine the plasma levels of other major proinflammatory cytokines in similar clinical settings patients with unstable angina and acute myocardial infarction and the relationship extent between them. This study aimed to investigate and compare the level of IL-1 in Unstable Angina and Acute Myocardial Infarction patients. Thirty patients with unstable angina and thirty patients with Acute Myocardial Infarction, also thirty healthy individual as control were included in this study to measure the levels of IL-1alpha, lipid profile and Body Mass Index. There was a significant increase in the level of IL-1 ? in patients with acute myocardial infarction or with unstable angina compared with control group. IL-1 ? positively correlated with total cholesterol, triglycerides, Low Density Lipoprotein and Very Low Density Lipoprotein, while there was a negative correlation with High Density Lipoprotein. In conclusionInterleukin-1 ? significantly increases in patients with acute myocardial infarction or with unstable angina. There was no significant difference in level of IL-1? between AMI and unstable angina patients.
Transport layer is responsible for delivering data to the appropriate application process on the host computers. The two most popular transport layer protocols are Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). TCP is considered one of the most important protocols in the Internet. UDP is a minimal message-oriented Transport Layer protocol. In this paper we have compared the performance of TCP and UDP on the wired network. Network Simulator (NS2) has been used for performance Comparison since it is preferred by the networking research community. Constant bit rate (CBR) traffic used for both TCP and UDP protocols.
In this study, we review the ARIMA (p, d, q), the EWMA and the DLM (dynamic linear moodelling) procedures in brief in order to accomdate the ac(autocorrelation) structure of data .We consider the recursive estimation and prediction algorithms based on Bayes and KF (Kalman filtering) techniques for correlated observations.We investigate the effect on the MSE of these procedures and compare them using generated data.
Wireless sensor applications are susceptible to energy constraints. Most of the energy is consumed in communication between wireless nodes. Clustering and data aggregation are the two widely used strategies for reducing energy usage and increasing the lifetime of wireless sensor networks. In target tracking applications, large amount of redundant data is produced regularly. Hence, deployment of effective data aggregation schemes is vital to eliminate data redundancy. This work aims to conduct a comparative study of various research approaches that employ clustering techniques for efficiently aggregating data in target tracking applications as selection of an appropriate clustering algorithm may reflect positive results in the data aggregati
... Show MoreSamples of the ovary and uterus of local breed cats used to investigate the histological, histometrical and hormonal features. The paraffin embedding technique was used for processing of tissue that stained by hematoxyline and eosin stain, and massons trichrom stain. Ovary of at proestrus or oestrus phases composed of outer cortex that covered by cuboidal germinal epithelium and inner medulla. Tunica albuginea composed of a thin layer of characterized by fusiform stromal cells. The cortex content groups of Oogonial cells, numerous primordial follicles, little primary, secondary and tertiary follicles in addition for 1-2 follicular cysts and mature corpus letium. In pregnant cat the thickness of ovarian cortex was significantly incre
... Show MoreThe cyanobacterial neurotoxin
Classifying an overlapping object is one of the main challenges faced by researchers who work in object detection and recognition. Most of the available algorithms that have been developed are only able to classify or recognize objects which are either individually separated from each other or a single object in a scene(s), but not overlapping kitchen utensil objects. In this project, Faster R-CNN and YOLOv5 algorithms were proposed to detect and classify an overlapping object in a kitchen area. The YOLOv5 and Faster R-CNN were applied to overlapping objects where the filter or kernel that are expected to be able to separate the overlapping object in the dedicated layer of applying models. A kitchen utensil benchmark image database and
... Show MoreRegression models are one of the most important models used in modern studies, especially research and health studies because of the important results they achieve. Two regression models were used: Poisson Regression Model and Conway-Max Well- Poisson), where this study aimed to make a comparison between the two models and choose the best one between them using the simulation method and at different sample sizes (n = 25,50,100) and with repetitions (r = 1000). The Matlab program was adopted.) to conduct a simulation experiment, where the results showed the superiority of the Poisson model through the mean square error criterion (MSE) and also through the Akaiki criterion (AIC) for the same distribution.
Paper type:
... Show MoreAn Experimental comparison between the current-voltage
characteristic and the efficiency conversion from solar to electric energy were studied for square and circular single crystal silicon solar
cell of equal area (35.28 cm2) . The results show that the solar shape is
an important factor in calculating the current-voltage characteristics and efficiency of the solar cell. It was shown that the performance effici
... Show MoreAbstract
The methods of the Principal Components and Partial Least Squares can be regard very important methods in the regression analysis, whe
... Show More