This work comprises the synthesis of new thioxanthone derivatives containing C-substituted thioxanthone. To obtain these derivatives, the o-mercapto benzoic acid was chosen as the starting material, which was reacted with dry benzene in sulfuric acid (98 %) to produce the thioxanthone (1). The 2,7-(disulfonyl phosphine imine) thioxanthone (4-8) were prepared from reaction of compound (1) with chlorosulfonic acid gave 2,7-(disulfonyl chloride) thioxanthone (2). Treatment of (2) with sodium azide to produce 2,7-(disulfonyl azide) thioxanthone (3). Condensation of (3) with phosphorus compounds afforded compounds (4-8). The 2,7-(disulfonamide) thioxanthone (9-21) was obtained when compound (2) condensed with different aromatic amines, it gave the expected amides (9-21).
2-hydrazinylbenzo[d]thiazole compound [1] is produced from reaction of 2-mercapto-benzothiazole with hydrazine hydride in ethanol. Compound [1] reacted with maleic anhydride in DMF to produce (Z)-4-(2-(benzo[d] thiazol-2yl) hydrazinyl)-4-oxobut-2-enoic acid [compound (2)]. While the treatment of compound [2] with the ammonium persulfate (NH4)2S2O8 (as the initiator) in order to produce compound [3], then compound [3] reacted with thionyl chloride in benzene to produce compound [4], finally compound [4] reaction with various drugs: cephalexin, amoxicillin, sulfamethizole, elecoxib obtained polymers [5–8]. The structure of synthesized compounds identified by spectral data: fourier transform infrared (FTIR) and proton nuclear magneti
... Show MoreThis research includes the synthesis of some new different heterocyclic derivatives of 5-Bromoisatin. New sulfonylamide, diazine, oxazole, thiazole and 1,2,3-triazole derivatives of 5-Bromoisatin have been synthesized. The synthesis process started by the reaction of 5-Bromoisatin with different reagents to obtain schiff bases of 5-Bromoisatin intermediate compounds(1, 8, 19) by using glacial acetic acid as a catalyst in three routes. The first route, 5-Bromoisatin reacted with p-aminosulfonylchloride to product compound(1), then converted to sulfonyl amide derivatives(2-7) by the reaction of compound(1) with different substituted primary aromatic amine in absolute ethanol. The second route includes the reaction of 5-Bromoisatin rea
... Show MoreThis research include synthesized and characterization the compound [I] by reaction terephthaldehyde , mercaptoacetic acid and thiosemicarbazide with concentrated sulfuric acid then this compound reaction with ethyl chloroacetate and sodium acetate to product ester compound [II],the latter compound reaction with hydrazine hydrate to synthesized acid hydrazide [III] after that reaction with 4-alkoxy benzaldehyde[IV]n to synthesized Schiff bases compounds [V]n, the compound [VI] synthesized via reaction compound [I] with chloroacetic acid and sodium acetate then the compound[VI] reaction with 2-phenylenediamine in 4 N hydrochloric acid to product benzimidazole compound[VII]. The compounds characterized by melting points, FTIR and 1HNMR spectr
... Show MoreA new ligand complexes have been synthesis from reaction of metal ions of MnII , CoII , NiII , CuII , ZnII , CdII and PdII with schiff base [(E)-1-((2-amino-5-(3, 4, 5-trimethoxybenzyl) pyrimidin-4-ylimino) methyl) naphthalen-2-ol [HL)]. The prepared [HL] was characterized by FT-IR, UV-Vis spectroscopy, 1H13CNMR spectra Mass spectra and melting point. The compounds were characterized by techniques UV-Vis and FT-IR spectral studies, micro analysis (C.H.N), determination of atomic absorption, chloride content, molar conductivity measurements, magnetic susceptibility and melting point. The ligand acts as a monobasic tridentate, coordinating through deprotonated phenolic O and azomethine N atoms. The compounds are neutral electrolytic in dimeth
... Show MoreA new ligand (H4L) and its complexes with ( ZnII, CdII and HgII) were prepared. This ligand was prepared in two steps. In the first step a solution of terephthaldehyde in methanol was reacted under reflux with 1,2-phenylenediamine to give an precursor compound which reacted in the second step with 2,4-dihydroxybenzaldehyde to give the ligand. The complexes were then synthesized by direct reaction of the corresponding metal chloride with the ligand. The ligand and complexes were characterized by spectroscopic methods FT-IR, UV-Vis, 1 HNMR, and atomic absorption, chloride content, HPLC, mole-ratio determination. in addition to conductivity measurement. The data of these measurements suggest a distorted tetrahedral geometry for ZnII, C
... Show MoreA new ligand (H4L) and its complexes with ( ZnII, CdII and HgII) were prepared. This ligand was prepared in two steps. In the first step a solution of terephthaldehyde in methanol was reacted under reflux with 1,2-phenylenediamine to give an precursor compound which reacted in the second step with 2,4-dihydroxybenzaldehyde to give the ligand. The complexes were then synthesized by direct reaction of the corresponding metal chloride with the ligand. The ligand and complexes were characterized by spectroscopic methods FT-IR, UV-Vis, 1HNMR, and atomic absorption, chloride content, HPLC, mole-ratio determination. in addition to conductivity measurement. The data of these measurements suggest a distorted tetrahedral g
... Show MoreNowadays nanoparticles are used in many fields of life all over the world, and there are numerous ways to obtain them: chemical, physical and biological processes. In recent times, the biological method for the synthesis of nanoparticles associated with using plant extract is widely spread. Optimal conditions for synthesis of silver nanoparticles using aqueous seeds extract of Myristica fragrance were highlighted in this research, such as type of plant extract, weight of extracted plant material, volume ratio of plant extract to AgNO3 and temperature of reaction. The study proved that the optimal status for AgNPs synthesis by using 10 g of M. fragrance seeds powder were added to 100 mL boiled distilled water, then homogenized and f
... Show MoreThe purpose of this research is to prepare new vanillic acid derivatives with 1,2,4-triazole-3-thiol heterocyclic ring and evaluate their antimicrobial activity in a preliminary assessment. A multistep synthesis was established for the preparation of new vanillic acid-triazole conjugates. The intermediate of 4-(4-amino-5-mercapto-4H-1,2,4-triazol-3-yl)-2-methoxyphenol (4) reacts with different heterocyclic aldehydes (thiophene-2-carboxaldehyde, pyrrole-2-carboxaldehyde, thiophene-3-carboxaldehyde, and furfural ) in ethanol containing few drops of acetic acid yielded the corresponding 4-(4-(substituted amino)-5-mercapto-4H-1,2,4-1triazol-3-yl)-2-methoxy phenol derivatives (
The snthesis and characterization of cobalt(II), nickel(II), copper(II) and zinc(II) complexes of azo ligand 4-[(5-acetyl-2-aminophenyl)- diazenyl]-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one derived from 4-aminoantipyrine and 4-aminoacetophenone are reported. The nature of the compounds have been studied followed by mole ratio and methods of continuous contrast, Beer′s law followed during a condensation rate (1 × 10-4 – 3 × 10-4 M). The analytical data showed that all the complexes are in 1:2 metal-ligand ratio. An octahedral geometry have been suggested for all the compounds and biological studies of all the complexes were evaluated against different types of antimicrobial strains.
Nowadays nanoparticles are used in many fields of life all over the world, and there are numerous ways to obtain them: chemical, physical and biological processes. In recent times, the biological method for the synthesis of nanoparticles associated with using plant extract is widely spread. Optimal conditions for synthesis of silver nanoparticles using aqueous seeds extract of Myristica fragrance were highlighted in this research, such as type of plant extract, weight of extracted plant material, volume ratio of plant extract to AgNO3 and temperature of reaction. The study proved that the optimal status for AgNPs synthesis by using 10 g of M. fragrance seeds powder were added to 100 mL boiled distilled water, then homogenized and filt
... Show More