New metal complexes of the ligands 2-benzamido benzothiazole(B1), and 2-actamido benzothiazole(B2) with metal ions Ni(II),and Co(II) were prepared in alcoholic medium. The prepared complexes were characterized by FT-IR and electronic spectroscopy, Magnetic susceptibility, Flame Atomic Absorption technique as well as elemental analysis and conductivity measurement. From the spectral studies, an octahedral monomer structure proposed for Ni(II) complexes, and a tetrahedral monomer structure for Co(II)complexes.Semi-empirical methods (PM3,and ZINDO/1)were carried out to evaluate the heat formation( ?H?f)binding energy(?Eb) and dipole moment(µ)for all metal complexes. Also vibration frequencies, Electrostatic potential, HOMO and LUMO energies for ligands were calculated.
Despite extensive investigations, an effective treatment for sepsis remains elusive and a better understanding of the inflammatory response to infection is required to identify potential new targets for therapy. In this study we have used RNAi technology to show, for the first time, that the inducible lysophosphatidylcholine acyltransferase 2 (LPCAT2) plays a key role in macrophage inflammatory gene expression in response to stimulation with bacterial ligands. Using siRNA- or shRNA-mediated knockdown, we demonstrate that, in contrast to the constitutive LPCAT1, LPCAT2 is required for macrophage cytokine gene expression and release in response to TLR4 and TLR2 ligand stimulation but not for TLR-independent stimuli. In addition, cells transfe
... Show More(Cu1-x,Agx)2ZnSnSe4 alloys have been fabricated with different Ag content(x=0, 0.1, and 0.2) successfully from their elements. Thin films of these alloys have been deposited on coring glass substrate at room temperature by thermal evaporation technique under vacuum of 10-5Torr with thickness of 800nm and deposition rate of 0.53 nm/sec. Later, films have been annealed in vacuum at (373, and 473)K, for one hour. The crystal structure of fabricated alloys and as deposited thin films had been examined by XRD analysis, which confirms the formation of tetragonal phase in [112] direction, and no secondary phases are founded. The shifting of main polycrystalline peak (112) to lower Bragg’s angle as compared to Cu2ZnSnSe4 angle refers to incorpora
... Show MoreDifferent polymers were prepared by condensation polymerization of sebacic anhydride and adipic anhydride with ethylene glycol and poly(ethylene glycol). Their number average molecular weights were determined by end group analysis. Then, they were grafted on the prepared phthalocyaninatocopper(II) compounds with the general formula (NH2)4PcCu(II) having amino groups of 3,3',3'',3'''- or 4,4',4'',4'''- positions. All prepared polymers, compounds, and phthalocyaninatocopper(II)-grafted polymers were characterized by FTIR. The sizing measurements were carried out in 3,3',3'',3'''- (NH2)4PcCu(II) and 4,4',4'',4'''- (NH2)4PcCu(II) compounds with and without grafting polymers. The results showed that the grafting process led to decreasing in par
... Show MoreThe multi-dentate Schiff base ligand (H2L), where H2L=2,2'-(((1,3,5,6)-1-(3-((l1-oxidaneyl)-l5-methyl)-4-hydroxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)hepta-1,6-di ene-3,5-diylidene)bis(azaneylylidene))bis(3-(4-hydroxyphenyl)propanoic acid), has been prepared from curcumin and L- Tyrosine amino acid. The synthesized Schiff base ligand (H2L) and the second ligand 1,10-phenanthroline (phen) are used to prepare the new complexes [Al(L)(phen)]Cl, K[Ag(L)(phen)] and [Pb(L)(phen)]. The synthesized compounds are characterized by magnetic susceptibility measurements, micro elemental analysis (C.H.N), mass spectrometry, molar conductance, FT-infrared, UV-visible, atomic absorption (AA), 13C-NMR, and 1H-NMR spectral studies. The characterization of the
... Show MoreWere analyzed curved optical fates Almarchih absolute colony of the binary type, the Great Palmstqrh using mathematical relationships derived for that and that gave us the results closer to the results of the observed spectral Great Colonial
In the current study, a direct method was used to create a new series of charge-transfer complexes of chemicals. In a good yield, new charge-transfer complexes were produced when different quinones reacted with acetonitrile as solvent in a 1:1 mole ratio with N-phenyl-3,4-selenadiazo benzophenone imine. By using analysis techniques like UV, IR, and 1H, 13C-NMR, every substance was recognized. The analysis's results matched the chemical structures proposed for the synthesized substances. Functional theory of density (DFT)
has been used to analyze the molecular structure of the produced Charge-Transfer Complexes, and the energy gap, HOMO surfaces, and LUMO surfaces have all been created throughout the geometry optimization process ut
Complexes of Lanthanide ione Ln(III) =La(III) , Ce(III),Pr(III) and Nd(III) withligands of nicotinamide (na) and Benzimidazole (BIMD) have been prepared withgeneral formula [M(na)3(BIMD)3](NO3) where :M = Ln(III) = La(III) , Ce(III) , Gd(III) , Nd(III) .Na = nicotinamide = C7H6N2OBIMD = Benzimidazole = C7H6N2All compounds have been characterized by spectroscopic methods [FT-IR , UV-VIS ,AAS] , microanalysis (C.H.N) Along with conductivity measurements , solubility ,melting point , theroitical measurment by using chem office 3D prog .Model (2000) .Frome the above data the proposed moleculer structure for all complexes with its ionsis octahydral geometries