An antibacterial and antifungal piperonal-derived compound and its Rh(III), Pd(II), Pt(IV), and Cd(II) metal complexes were synthesized and characterized by spectroscopic methods, conductivity, metal analyses and magnetic moment measurements. The nature of the complexes formed in ethanolic solution was studied following the molar ratio method. From the spectral studies, octahedral geometry was suggested for rhodium (III) and platinum (IV) complexes, while a square planer structure was suggested for palladium (II) complex and a tetrahedral geometry for cadmium (II) complex. Structural geometries of these compounds were also suggested in gas phase by using hyperchem-8 program for the molecular mechanics and semi-empirical calculations. The heat of formation and binding energy for the prepared compounds was calculated by using PM3 and AMBER methods. The theoretically vibration spectra for the imine and its starting material was evaluated by using PM3 method. Preliminary in vitro tests for antibacterial and antifungal activity showed that most of the prepared compounds display a good activity to (Staphylococcus aureus), (Escherichia coli) and (Candida albicans).
New complexes of M(II) with mixed ligand of 5-Chlorosalicylic acid (CSA) C7H5ClO3 as primary ligand and L- Valine (L-Val) C5H11NO2 as a secondary ligand were prepared and characterized by elemental analysis (C.H.N), UV., FT-IR, magnetic susceptibility, µeff (B.M) as well as the conductivity measurements (Λm ). In the complexes, the 5-chlorosalicylic acid is bidentate in all complexes coordinating through –OH- and –COO- groups; also L-Valine behaves as a bidentate ligand in all complexes through –NH2 and –COO- groups. These five mixed ligand complexes formulated as Na3[M(CSA)2(L-Val)]. The proposed molecular structure for all complexes is octahedral geometries. The synthesis complexes were tested in vitro for against four bacteria
... Show MoreNew complexes of M(II) with mixed ligand of 5-Chlorosalicylic acid (CSA) C7H5ClO3 as primary ligand and L- Valine (L-Val) C5H11NO2 as a secondary ligand were prepared and characterized by elemental analysis (C.H.N), UV., FT-IR, magnetic susceptibility, μeff (B.M) as well as the conductivity measurements (Λm ). In the complexes, the 5-chlorosalicylic acid is bidentate in all complexes coordinating through –OH- and –COO- groups; also L-Valine behaves as a bidentate ligand in all complexes through –NH2 and –COO- groups. These five mixed ligand complexes formulated as Na3[M(CSA)2(L-Val)]. The proposed molecular structure for all complexes is octahedral geometries. The synthesis complexes were tested in vitro for against four bacteria
... Show MoreThe aim of the work is synthesis and characterization of bidentate ligand [dipotassium sodium7-((E)-2-(2-((Z)-1-carboxylatoethylideneamino)thiazol-4-yl)-2 (carboxylatemethoxyimino) acet amido)-8-oxo-3-vinyl-5- thia-1-azabicyclo[4.2.0] oct-2- ene-2- carboxylate] [Nak2L], from the reaction of cefixime with sodium pyruvet to produce the ligand [Nak2L], the reaction was carried out in methanol as a solvent under reflux. The prepared ligand [Nak2L] which was characterized by FT-IR, UV-Vis spectroscopy, 1H, 13C-NMR spectra, Mass spectra, (C.H.N) and melting point. The mixed ligand complexes were prepared from ligand [Nak2L] was used as a primary ligand while 8-hydroxy quinoline [Q] was used as a secondary ligand with metal ion M(?).Where M(?) =
... Show MorePrevious studies on the synthesis and characterization of metal chelates with uracil by elemental analysis, conductivity, IR, UV-Vis, NMR spectroscopy, and thermal analysis were covered in this review article. Reviewing these studies, we found that uracil can be coordinated through the electron pair on the N1, N3, O2, or O4 atoms. If the uracil was a mono-dentate ligand, it will be coordinated by one of the following atoms: N1, N3 or O2. But if the uracil was bi-dentate ligand, it will be coordinated by atoms N1 and O2, N3 and O2 or N3 and O4. However, when uracil forms complexes in the form of polymers, coordination occurs through the following atoms: N1 and N3 or N1 and O4.
A new ligand complexes have been synthesis from reaction of metal ions of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), Pd(II) and Pt(II) with schiff base LH. 5-[(2-Hydroxy-naphthalen-1-ylmethylene)-amino]-2-phenyl-2,4-dihydro-pyrazol-3-one, this ligand was characterized by Fourier transform infrared (FTIR), UV-vis, 1H, 13CNMR, and mass spectra. All complexes were characterized by techniques micro analysis C.H.N, UV-vis and FTIR spectral studies, atomic absorption, chloride content, molar conductivity measurements and magnetic susceptibility. The ligand acts as bidentate, coordination through nitrogen atom from azomethin group and deprotonated phenolic oxygen atom. The spectroscopic and analytical measurements showed that
... Show MoreThe azo Schiff base [Reaction of 4-aminoanypyrine and P-hydroxy acetophenone] and O-Phenylene diamine have been prepared. One azo Schiff base chelate of Co(Il), Ni(II), Cu(II) and Zn(II)ion was also prepared. The chemical frameworks of the azo Schiff base and like elemental analyses (CHN), determinations of molar conductance, 1 H &13C NMR, IR mass and electronic spectroscopy .The elemental analyses exhibited the combination of [L: M] 1:1 ratio. Established on the values IR spectral, it is showed that the azo Schiff base compound acts as neutral hexadentate ligand bonded with the metal ion from two hydroxyl, two azomethine and two azo groups of the azo Schiff base compound in chelation was confirmed by IR , 1Hand 13CNMR spectral outco
... Show MoreNew complexes of the [M(Ura)(Phen)(OH2)Cl2]Cl.2H2O type, where (Ura) uracil ; (Phen) 1,10-phenanthroline hydrate; M (Cr+3 , Fe+3 and La+3) were synthesized from mix ligand and characterized . These complexes have been characterized by the elemental micro analysis, spectral (FT-IR., UV-Vis, 1HNMR, 13CNMR and Mass) and magnetic susceptibility as well the molar conductive mensuration. Cr+3, Fe+3 and La+3- complexes of six–coordinated were proposed for the insulated for three metal(III) complexes for molecular formulas following into uracil property and 1,10-phenanthroline hydrate present . The proposed molecular structure for all metal (III) complexes is octahedral geometries .The biological activity was tested of metal(III) salts, ligands
... Show MoreNew complexes of the [M(Ura)(Phen)(OH2)Cl2]Cl.2H2O type, where (Ura) uracil ; (Phen) 1,10-phenanthroline hydrate; M (Cr+3 , Fe+3 and La+3) were synthesized from mix ligand and characterized . These complexes have been characterized by the elemental micro analysis, spectral (FT-IR., UV-Vis, 1HNMR, 13CNMR and Mass) and magnetic susceptibility as well the molar conductive mensuration. Cr+3, Fe+3 and La+3- complexes of six–coordinated were proposed for the insulated for three metal(III) complexes for molecular formulas following into uracil property and 1,10-phenanthroline hydrate present . The proposed molecular structure for all metal (III) complexes is octahedral geometries .The biological activity was tested of metal(III) salts, liga
... Show MoreThe Ligand 2-(4-nitrophenyl azo)-2,4-dimethylphenol derived from 4-nitroaniline and 2,4-dimethylphenol was synthesized. The prepared ligand was identified by FT-IR and UV-Vis spectroscopic techniques. Treatment of the ligand with the following metal ions ( CuII , ZnII ,CdII and HgII) in aqueous ethanol with a 1:2 M:L ratio. Characterization of these compounds has been done on the basis of FT-IR and UV-Vis, as well as magnetic susceptibility and conductivity measurements. On the basis of physicochemical data tetrahedral geometries were assigned for the complexes.
Transition metal complexes of Co(II), Ni(II), Cu(II), and Zn(II) with 2-(4-antipyrine azo)-4-nitroaniline derived from 4-aminoantipyrine and 4-nitroaniline were synthesized. Characterization of these compounds has been done on the basis of elemental analysis, electronic data, FT-IR, UV-Vis and 1HNMR, as well as magnetic susceptibility and conductivity measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1×10-4 - 3×10-4 M). High molar absorbtivity of the complex solutions were observed. From the analytical data, the stoichiometry of the complexes has been found to be 1:2 (metal:ligand). On the basis of physicochemical data octa
... Show More