New Fe(II),Co(II),Ni(II),Cu(II) and Zn(II) Schiff base complexes which have the molar ratio 2:1 metal to ligand of the general formula [M2( L) X4] (where L=bis(2-methyl furfuraldene)-4-4`-methylene bis(cyclo-hexylamine) ) were prepared by the reaction of the metal salts with the ligand of Schiff base derived from the condensation of 2:1 molar ratio of 2-acetyl furan and 4-4`-methylene bis (cyclohexylamine). The complexes were characterized by elemental analysis using atomic absorption spectrophotometer ,molar conductance measurements, infrared, electronic spectra,and magnetic susceptibility measurement. These studies revealed binuclear omplexes. The metal(II) ion in these complexes have four coordination sites giving the most expected tetrahedral structure and square planar for Cu(II)ion.
The compound [G1] was prepared from the reaction of thiosemicarbazide with para-hydroxyphenylmethyl ketone in ethanol as a solvent. Then by sequence reactions prepared [G2] and [G3] compounds. The compound [G4] reaction with ethyl acetoacetoneto synthesized compound [G6] and acetyl acetone to synthesized compound [G5]. Reaction the [G3] with two different types of aldehydes in the present of pipredine to form new alkenes compounds [G7]and [G8].The compound [G3] reacted with hydrazine hydrate to formation[G4] with present the hydrazine hydrade 80% in (10) ml of absolute ethanol. Latter the compound [G4]reacted with different aldehydes with present the glacial acetic acid and the solvent was ethanol to formed the Schiff bases compounds[G9] an
... Show MoreThe compound [G1] was prepared from the reaction of thiosemicarbazide with para-hydroxyphenylmethyl ketone in ethanol as a solvent. Then by sequence reactions prepared [G2] and [G3] compounds. The compound [G4] reaction with ethyl acetoacetoneto synthesized compound [G6] and acetyl acetone to synthesized compound [G5]. Reaction the [G3] with two different types of aldehydes in the present of pipredine to form new alkenes compounds [G7]and [G8].The compound [G3] reacted with hydrazine hydrate to formation[G4] with present the hydrazine hydrade 80% in (10) ml of absolute ethanol. Latter the compound [G4]reacted with different aldehydes with present the glacial acetic acid and the solvent was ethanol to formed the Schiff bases compounds[G9] an
... Show MoreVarious industrial applications include the dyeing of textiles, paper, leather, and food products, as well as the cosmetics industry. Physic-chemical methods are required to breakdown dyes because they are known to be harmful and persistent in the environment. Many companies' treated effluents contain small amounts of dyes. When it comes to removing dye from wastewater, adsorption has verified to be aneconomical alternative to more traditional treatment procedures. It's important to degrade color impurities in industrial effluents since they constitute a serious health and environmental concern. One way that's been tried is using clay minerals as an adsorbent. Using adsorption for removing
... Show MoreRecently, important efforts have been made in an attempt to search for the cheapest and ecofriendly alternatives adsorbents. In the present work, waste molasses from Iraqi date palm (Zahdi) had been used as a provenance to produce charcoal for the removal of methylene blue (MB) dye from water. The optimum prepared charcoal was obtained at 150 C, by increasing temperature to 175 C, the charcoal had almost converted to ash. The obtained charcoal have been inspected for properties using scanning electron microscope (SEM), atomic force microscope (AFM), porosity and surface area. Adsorption data were optimized to Langmuir and Freundlich and adsorption parameters have been evaluated. The thermodynamic parameters like a change
... Show MoreA mixture of algae biomass (Chrysophyta, Cyanophyta, and Chlorophyte) has been investigated for its possible adsorption removal of cationic dyes (methylene blue, MB). Effect of pH (1-8), biosorbent dosage (0.2-2 g/100ml), agitated speed (100-300), particle size (1304-89μm), temperature (20-40˚C), initial dye concentration (20-300 mg/L), and sorption–desorption were investigated to assess the algal-dye sorption mechanism. Different pre-treatments, alkali, protonation, and CaCl2 have been experienced in order to enhance the adsorption capacity as well as the stability of the algal biomass. Equilibrium isotherm data were analyzed using Langmuir, Freundlich, and Temkin models. The maximum dye-sorption capacity was 26.65 mg/g at pH= 5, 25
... Show MoreThe contemporary development applications on scientific areas of acyclic and cyclic Schiff bases and their complexes.
Many additives are used to improve the performance of cables in terms of increasing their flame retardancy, thermal stability, thermal conductivity, and other characteristics. Unfortunately, most of these additives contain heavy metals. Therefore, the main objective of this study is to introduce a material representing a new generation of environmentally friendly heavy metal-free stabilizers for cable grade poly(vinyl chloride) that can compete with traditional materials in terms of performance and distinctive properties. This unique additive is Oxydtron, a synthetic silicate or simply nanocement. The tests performed are rheological properties represented by a capillary rheometry analysis, limiting o
Acidity constants at 30co and 0.125 ionic strength have been determined for the Nitrogous bases of nucleic acid; cytocine, uarcil and thymine, and found to be 3.55 x10-19 , 1.44 x10 -19 and 7.24 x10 -20 respectively. Stability constants of these bases with Thorium and uranyl ions have been determined. Results showed that metal ions Thorium and uranyl ions behave as hard acids and the nitrogenum bases behave as Hard bases according to Pearson's definition .Hardness – softness parameters for these ligands were calculated ,stability constants of complexes with metal ions could be arranged as follows :- Cytosine > Uracil > Thymine .