This paper is concerned with the design and implementation of an image compression method based on biorthogonal tap-9/7 discrete wavelet transform (DWT) and quadtree coding method. As a first step the color correlation is handled using YUV color representation instead of RGB. Then, the chromatic sub-bands are downsampled, and the data of each color band is transformed using wavelet transform. The produced wavelet sub-bands are quantized using hierarchal scalar quantization method. The detail quantized coefficient is coded using quadtree coding followed by Lempel-Ziv-Welch (LZW) encoding. While the approximation coefficients are coded using delta coding followed by LZW encoding. The test results indicated that the compression results are comparable to those gained by standard compression schemes.
The use of Cosine transform to analyze the model-noise pattern alteration with different vibration model applied on multimode fiber optics are studied. It's results compared with the Fourier transform to perform the same analysis using total frequency difference and the computation time, which almost coincide for the both transforms. A discussion for the results and recommendation are introduced.
In this research, optical communication coding systems are designed and constructed by utilizing Frequency Shift Code (FSC) technique. Calculations of the system quality represented by signal to noise ratio (S/N), Bit Error Rate (BER),and Power budget are done. In FSC system, the data of Nonreturn- to–zero (NRZ ) with bit rate at 190 kb/s was entered into FSC encoder circuit in transmitter unit. This data modulates the laser source HFCT-5205 with wavelength at 1310 nm by Intensity Modulation (IM) method, then this data is transferred through Single Mode (SM) optical fiber. The recovery of the NRZ is achieved using decoder circuit in receiver unit. The calculations of BER and S/N for FSC system a
... Show MoreDue to the importance of solutions of partial differential equations, linear, nonlinear, homogeneous, and non-homogeneous, in important life applications, including engineering applications, physics and astronomy, medical sciences, and life technology, and their importance in solutions to heat transfer equations, wave, Laplace equation, telegraph, etc. In this paper, a new double integral transform has been proposed.
In this work, we have introduced a new double transform ( Double Complex EE Transform ). In addition, we presented the convolution theorem and proved the properties of the proposed transform, which has an effective and useful role in dealing with the solution of two-dimensional partial differential equations. Moreover
... Show MoreElectrocardiogram (ECG) is an important physiological signal for cardiac disease diagnosis. With the increasing use of modern electrocardiogram monitoring devices that generate vast amount of data requiring huge storage capacity. In order to decrease storage costs or make ECG signals suitable and ready for transmission through common communication channels, the ECG data
volume must be reduced. So an effective data compression method is required. This paper presents an efficient technique for the compression of ECG signals. In this technique, different transforms have been used to compress the ECG signals. At first, a 1-D ECG data was segmented and aligned to a 2-D data array, then 2-D mixed transform was implemented to compress the
Exchange of information through the channels of communication can be unsafe. Communication media are not safe to send sensitive information so it is necessary to provide the protection of information from disclosure to unauthorized persons. This research presented the method to information security is done through information hiding into the cover image using a least significant bit (LSB) technique, where a text file is encrypted using a secret sharing scheme. Then, generating positions to hiding information in a random manner of cover image, which is difficult to predict hiding in the image-by-image analysis or statistical analyzes. Where it provides two levels of information security through encryption of a text file using the secret sha
... Show MoreIn this work , a hybrid scheme tor Arabic speech for the recognition
of the speaker verification is presented . The scheme is hybrid as utilizes the traditional digi tal signal processi ng and neural network . Kohonen neural network has been used as a recognizer tor speaker verification after extract spectral features from an acoustic signal by Fast Fourier Transformation Algorithm(FFT) .
The system was im plemented using a PENTIUM processor , I000
MHZ compatible and MS-dos 6.2 .
In this paper, we introduce a new complex integral transform namely ”Complex Sadik Transform”. The
properties of this transformation are investigated. This complex integral transformation is used to reduce
the core problem to a simple algebraic equation. The answer to this primary problem can than be obtained
by solving this algebraic equation and applying the inverse of complex Sadik transformation. Finally,
the complex Sadik integral transformation is applied and used to find the solution of linear higher order
ordinary differential equations. As well as, we present and discuss, some important real life problems
such as: pharmacokinetics problem ,nuclear physics problem and Beams Probem
In this study, an analysis of re-using the JPEG lossy algorithm on the quality of satellite imagery is presented. The standard JPEG compression algorithm is adopted and applied using Irfan view program, the rang of JPEG quality that used is 50-100.Depending on the calculated satellite image quality variation, the maximum number of the re-use of the JPEG lossy algorithm adopted in this study is 50 times. The image quality degradation to the JPEG quality factor and the number of re-use of the JPEG algorithm to store the satellite image is analyzed.
Quantitative analysis of human voice has been subject of interest and the subject gained momentum when human voice was identified as a modality for human authentication and identification. The main organ responsible for production of sound is larynx and the structure of larynx along with its physical properties and modes of vibration determine the nature and quality of sound produced. There has been lot of work from the point of view of fundamental frequency of sound and its characteristics. With the introduction of additional applications of human voice interest grew in other characteristics of sound and possibility of extracting useful features from human voice. We conducted a study using Fast Fourier Transform (FFT) technique to analy
... Show More