A number of pulsed experiments have been carried out using a high-voltage circuit containing R,L, and C in certain arrangements. A spherical spark gap of steel electrodes was used as a high-current switch operated by a voltage of up to 8kV and triggered in both self-triggering and third-electrode triggering modes. Current measurements were carried out by using both current-viewing resistor and Rogowski coils designed for this purpose. Typical current waveforms have shown obvious dominating inductance effect of the circuit components in an underdamped oscillation. The behavior of the circuit impedance was studied by recording both pulsed current peaks and the charging voltages when currents of up to 2.5kA were recorded. The duration of these current pulses were found to extend between 0.1?s and 0.3?s depending on the values of the circuit components as well as the spacing of the spark gap electrodes along which the plasma propagates at atmospheric pressure. Over the whole range of experimental conditions, the average nominal impedance values were ranged between (2-10)? depending on the gap and circuit parameters. Typical damage patterns were observed with average diameters of up to 8.3 mm on the high voltage electrode and 10.5 mm on the grounded sphere resulting from accumulative discharges and power dissipation within the gap.
This work presents a computer studying to simulate the charging process of a dust grain immersed in plasma with negative ions. The study based on the discrete charging model. The model was developed to take into account the effect of negative ions on charging process of dust grain.
The model was translated to a numerical calculation by using computer programs. The program of model has been written with FORTRAN programming language to calculate the charging process for a dust particle in plasma with negative ion, the time distribution of a dust charge, number charge equilibrium and charging time for different value of ηe (ratio of number density of electron to number density of positive ion).
A theoretical analysis studied was performed to study the opacity broadening of spectral lines emitted from aluminum plasma produced by Nd-YLF laser. The plasma density was in the range 1028-1026 )) m-3 with length of plasma about ?300) m) , the opacity was studied as function of plasma density & principle quantum number. The results show that the opacity broadening increases as plasma density increases & decreases with the spacing between energy levels of emission spectral line.
In the current study, the emission spectra generated from clove were measured under normal atmospheric pressure with different laser energies. Clove is used as a source of essential oil in herbal medicine, in particular as a dynamic analgesic oil in dental and other diseases. For aromatherapy, Antiseptic, antiviral, and antimicrobial agents are also packaged with cloves. Compounds that reduce inflammation tend to battle sore throats, cold, and cough as they display so many advantages. The measured spectrum reveals distinctive lines of clove’s chemical elements. X-ray fluorescent (XRF) and atomic absorption spectrometry (AAS) were used to measure the spectrum generated or absorbed by detecting the presence of va
... Show MoreIn this work, thin films of cadmium oxide: nickel oxide (CdO: NiO) were prepared by pulsed laser deposition at different pulse energies of Nd: YAG laser. The thin films' properties were determined by various techniques to study the effect of pulse laser energy on thin films' properties. X-ray diffraction measurements showed a mixture of both phases. The degree of crystallinity and the lattice constant increase with the laser energy increase, while the lattice strain decreases. FE-SEM images show that the substrates' entire surface is uniformly covered, without any cracks, with a well-connected structure consisting of small spherical particles ranging in size from 15 to 120 nm. Increasing the laser power causes to increase the pa
... Show MoreIn this work, radius of shock wave of plasma plume (R) and speed of plasma (U) have been calculated theoretically using Matlab program.
A new scheme of plasma-mediated thermal coupling has been implemented which yields the temporal distributions of the thermal flux which reaches the metal surface, from which the spatial and temporal temperature profiles can be calculated. The model has shown that the temperature of evaporating surface is determined by the balance between the absorbed power and the rate of energy loss due to evaporation. When the laser power intensity range is 107 to108 W/cm2 the temperature of vapor could increase beyond the critical temperature of plasma ignition, i.e. plasma will be ignited above the metal surface. The plasma density has been analyzed at different values of vapor temperature and pressure using Boltzmann’s code for calculation of elec
... Show MoreIn the present work, the effect of the cylindrical configurations of the sputtering device electrodes on the plasma parameters (Debye length, electron temperature, electron density, plasma frequency) is studied. Also, the effect of the argon gas pressure on the discharge properties is examined with gas pressures of (0.08, 0.2, 0.4 and 0.6) Torr. The properties of the plasma are diagnosed by optical emission spectrometry. The spectroscopic method is adopted for examining the atomic spectra of argon emission. The electron temperature is determined by the Boltzmann method. While, the Stark-widening method was employed for calculating the electron number density. The voltage against current curves of the cylindrical sprayer disc
... Show MoreBack ground: The study was conducted on fifty patients (27 males and 20 females) with chronic renal failure (CRF) undergoing maintenance hemodialysis (HD), at
artificial Kidney unit, Al- Hakeem Hospital / Najaf, during the perioed from April to June 2008.
Patients & methods: Plasma osmolarity ( Posm), plasma creatinine (P cr ) plasma urea (P urea)>plasma sodium (P Na)and plasma potassium ( P k )were measured for
all patients before and after dialysis.
Results: The paired t -test was used to compare the pre-dialysis values with the post dialysis values and simple linear correlation to study the relation between (P
Na), and ( Posm), p values less than 0.05 considered not significant. The result of&
Cold plasma is a relatively low temperature gas, so this feature enables us to use cold plasma to treat thermally sensitive materials including polymers and biologic tissues. In this research, the non-thermal plasma system is designed with diameter (3 mm, 10 mm) Argon at atmospheric pressure as well as to be suitable for use in medical and biotechnological applications.
The thermal description of this system was studied and we observed the effect of the diameter of the plasma needle on the plasma, when the plasma needle slot is increased the plasma temperature decrease, as well as the effect of the voltages applied to the temperature of the plasma, where the temperature increasing with increasing the applied voltage . Results showed t