Two unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.
The reconciliation of tax reconciliation is one of the legal methods used by the financial authority in Iraq, which is done with the taxpayer
The research dealt with the weakness of tax revenues for many reasons, including tax evasion, which led to the search for ways to reduce evasion to increase the tax revenue, and settlement reconciliation one of these means .
The research proceeded from the premise that the use of a more broadly settled settlement would govern the tax evasion of taxpayers.
The researchers used a series of studies and previous research, books and other sources related to the subject of research, and this was done through the theoretical framework, and the practical aspect that included the fin
... Show MoreBackground: Marginal adaptation is critical for long – term success of crown and bridge restoration. Computer aided design / computer aided manufacture (CAD/ CAM) system is gaining more importance in the fabrication of dental restoration. Objective: The aim of this study is to evaluate the effect of crystallization firing on the vertical marginal gap of IPS. emax CAD crowns which fabricated with two different CAD/CAM systems .Materials and Methods: Twenty IPS e.max CAD crowns were fabricated. We had two major groups (A, B) (10 crowns for each group) according to the CAD/CAM system being used: Group A: fabricated with Imes - Icore CAD/CAM system; Group B: fabricated with In Lab Sirona CAD/CAM system. Each group was subdivided into two s
... Show More<span lang="EN-US">Diabetes is one of the deadliest diseases in the world that can lead to stroke, blindness, organ failure, and amputation of lower limbs. Researches state that diabetes can be controlled if it is detected at an early stage. Scientists are becoming more interested in classification algorithms in diagnosing diseases. In this study, we have analyzed the performance of five classification algorithms namely naïve Bayes, support vector machine, multi layer perceptron artificial neural network, decision tree, and random forest using diabetes dataset that contains the information of 2000 female patients. Various metrics were applied in evaluating the performance of the classifiers such as precision, area under the c
... Show MoreLinear discriminant analysis and logistic regression are the most widely used in multivariate statistical methods for analysis of data with categorical outcome variables .Both of them are appropriate for the development of linear classification models .linear discriminant analysis has been that the data of explanatory variables must be distributed multivariate normal distribution. While logistic regression no assumptions on the distribution of the explanatory data. Hence ,It is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions.
In this paper we have been focus for the comparison between three forms for classification data belongs
... Show MoreSupport vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in compa
... Show MoreCrime is considered as an unlawful activity of all kinds and it is punished by law. Crimes have an impact on a society's quality of life and economic development. With a large rise in crime globally, there is a necessity to analyze crime data to bring down the rate of crime. This encourages the police and people to occupy the required measures and more effectively restricting the crimes. The purpose of this research is to develop predictive models that can aid in crime pattern analysis and thus support the Boston department's crime prevention efforts. The geographical location factor has been adopted in our model, and this is due to its being an influential factor in several situations, whether it is traveling to a specific area or livin
... Show More