Two unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.
The long-term monitoring of land movements represents the most successful application of the Global Navigation Satellite System (GNSS), particularly the Global Positioning System. However, the application of long term monitoring of land movements depends on the availability of homogenous and consistent daily position time series of stations over a period of time. Such time series can be produced very efficiently by using Precise Point Positioning and Double Difference techniques based on particular sophisticated GNSS processing softwares. Nonetheless, these rely on the availability of GNSS products which are precise satellite orbit and clock, and Earth orientation parameters. Unfortunately, several changes and modifications have been mad
... Show MoreOlmesartan medoxomil (OM) has low bioavailability and limited solubility. To enhance bioavailability, fast dissolving films (FDF) with mixed micelles of soluplus (SPL) and solutol HS15 (STL H15) were developed using solvent casting. The optimised formula, FM2, used polyvinyl alcohol (PVA) and showed high entrapment efficiency, rapid disintegration, and significant improvement in OM bioavailability compared to the market tablet (Olmetec®). FM2 also demonstrated stability and potential for enhanced drug delivery.
Machine learning (ML) is a key component within the broader field of artificial intelligence (AI) that employs statistical methods to empower computers with the ability to learn and make decisions autonomously, without the need for explicit programming. It is founded on the concept that computers can acquire knowledge from data, identify patterns, and draw conclusions with minimal human intervention. The main categories of ML include supervised learning, unsupervised learning, semisupervised learning, and reinforcement learning. Supervised learning involves training models using labelled datasets and comprises two primary forms: classification and regression. Regression is used for continuous output, while classification is employed
... Show MoreThe research aims to find approximate solutions for two dimensions Fredholm linear integral equation. Using the two-variables of the Bernstein polynomials we find a solution to the approximate linear integral equation of the type two dimensions. Two examples have been discussed in detail.
In this paper, suggested method as well as the conventional methods (probability
plot-(p.p.) for estimations of the two-parameters (shape and scale) of the Weibull
distribution had proposed and the estimators had been implemented for different
sample sizes small, medium, and large of size 20, 50, and 100 respectively by
simulation technique. The comparisons were carried out between different methods
and sample sizes. It was observed from the results that suggested method which
were performed for the first time (as far as we know), by using MSE indicator, the
comparisons between the studied and suggested methods can be summarized
through extremely asymptotic for indicator (MSE) results by generating random
error
The present study develops an artificial neural network (ANN) to model an analysis and a simulation of the correlation between the average corrosion rate carbon steel and the effective parameter Reynolds number (Re), water concentration (Wc) % temperature (T o) with constant of PH 7 . The water, produced fom oil in Kirkuk oil field in Iraq from well no. k184-Depth2200ft., has been used as a corrosive media and specimen area (400 mm2) for the materials that were used as low carbon steel pipe. The pipes are supplied by Doura Refinery . The used flow system is all made of Q.V.F glass, and the circulation of the two –phase (liquid – liquid ) is affected using a Q.V.F pump .The input parameters of the model consists of Reynolds number , w
... Show More
This paper deals with a method called Statistical Energy Analysis that can be applied to the mechanical and acoustical systems like buildings, bridges and aircrafts …etc. S.E.A as a tool can be applied to the resonant systems in the circumstances of high frequency or/and complex structure». The parameters of S.E.A such as coupling loss factor, internal loss factor, modal density and input power are clarified in this work ; coupled plate sub-systems and explanations are presented for these parameters. The developed system is assumed to be resonant, conservative, linear and there is an equipartition of energy between all the resonant modes within a given frequency band in a given sub-system. The aim of th
... Show MoreNowadays, people's expression on the Internet is no longer limited to text, especially with the rise of the short video boom, leading to the emergence of a large number of modal data such as text, pictures, audio, and video. Compared to single mode data ,the multi-modal data always contains massive information. The mining process of multi-modal information can help computers to better understand human emotional characteristics. However, because the multi-modal data show obvious dynamic time series features, it is necessary to solve the dynamic correlation problem within a single mode and between different modes in the same application scene during the fusion process. To solve this problem, in this paper, a feature extraction framework of
... Show More