Two unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.
The issue, the existence of God Almighty, and the creativity of the universes including the whale, and assets and how diversified, and faith in him and his lordship and divinity, is a delicate issue, and very important and dangerous, and it occupied human thought old and new, and still occupy it until God takes the land and on it. Many complex issues of thought, behavior, and ethics have resulted in the belief of many communities in the existence of the Almighty, having ruled their minds, depicting their beliefs and distancing their thoughts about slippage and abuse. When they looked at the wonders of creatures and the minutes of the assets, they thought about the planetary and astronomical motion systems. His existence was denied by ath
... Show MoreFinancial funding of a construction firm plays an important role in all aspects of the process development. It has been noted that financial crises have a direct impact on the construction industry. The Iraqi government, whether locally or globally, has faced a severe shortage of financing which has resulted in incomplete projects. Due to the financial crisis that Iraq went through which led to the suspension of many residential complex projects and the difficulty of the use of public financing methods, we researched the private financing (public-private partnership) methods instead of public financing methods in residential complex projects implementation. This study verified the financial problems and the factors that relate to th
... Show MoreIn this paper, the methods of weighted residuals: Collocation Method (CM), Least Squares Method (LSM) and Galerkin Method (GM) are used to solve the thin film flow (TFF) equation. The weighted residual methods were implemented to get an approximate solution to the TFF equation. The accuracy of the obtained results is checked by calculating the maximum error remainder functions (MER). Moreover, the outcomes were examined in comparison with the 4th-order Runge-Kutta method (RK4) and good agreements have been achieved. All the evaluations have been successfully implemented by using the computer system Mathematica®10.
Classification of imbalanced data is an important issue. Many algorithms have been developed for classification, such as Back Propagation (BP) neural networks, decision tree, Bayesian networks etc., and have been used repeatedly in many fields. These algorithms speak of the problem of imbalanced data, where there are situations that belong to more classes than others. Imbalanced data result in poor performance and bias to a class without other classes. In this paper, we proposed three techniques based on the Over-Sampling (O.S.) technique for processing imbalanced dataset and redistributing it and converting it into balanced dataset. These techniques are (Improved Synthetic Minority Over-Sampling Technique (Improved SMOTE), Border
... Show MoreBecause of the experience of the mixture problem of high correlation and the existence of linear MultiCollinearity between the explanatory variables, because of the constraint of the unit and the interactions between them in the model, which increases the existence of links between the explanatory variables and this is illustrated by the variance inflation vector (VIF), L-Pseudo component to reduce the bond between the components of the mixture.
To estimate the parameters of the mixture model, we used in our research the use of methods that increase bias and reduce variance, such as the Ridge Regression Method and the Least Absolute Shrinkage and Selection Operator (LASSO) method a
... Show More