The adhesion strength between Polyethylene (PE) film and Aluminum surface by using the adhesive material (Cyanoacrylate) has been studied. Aluminum (Al) was used as a substrate, and polyethylene (PE) was used as a film adhered to the Al surface. Standard specimens were prepared to use in the peeling test in dry condition, other specimens were immersed in water for 12 days at room temperature. the results for the specimens in the dry condition had shown that high value in the peel force and the peel energy, the peel force was 0.38*103 N/m and the peel energy was 0.605*103 N/m, peeling the film from Al surface leaves a residual of the adhesive material on both adherend, the failure for this specimen were combination of adhesive and cohesive failure. For the specimens that were immersed in water for 12 days, the results had shown that the effect of water on the specimen (Al /PE), where the water diffusion coefficient on the adhesive joint was 1.09*10-14 m2/s and the peel force was 0.062*103 N/m and the peel energy was 0.124*103 N/m, PE film was peeled from Al surface without any resistance.
Two field experiments were conducted at two different texture sites. The first site of the fields of AlMed-hateya Agriculture Division / Babil Governorate. The second site of the fields of Al-Nouriah Research Station / Ministry of Agriculture, the factors of the study in the two sites included several factors. The first factor includes two irrigation systems: sprinkler irrigation and surface irrigation. The second factor is the method of cultivation which includes the method of cultivation with basin and furrowing. The third factor is the type of the cultivated crop which includes a local variety (Fajr 3) and a hybrid variety (Drakma). The actual water consumption for the sprinkler irrigation system reached (587.13 and 637.62) mm season-1 f
... Show MoreThis work was conducted to study the extraction of eucalyptus oil from natural plants (Eucalyptus camaldulensis leaves) using water distillation method by Clevenger apparatus. The effects of main operating parameters were studied: time to reach equilibrium, temperature (70 to100°C), solvent to solid ratio (4:1 to 8:1 (v/w)), agitation speed (0 to 900 rpm), and particle size (0.5 to 2.5 cm) of the fresh leaves, to find the best processing conditions for achieving maximum oil yield. The results showed that the agitation speed of 900 rpm, temperature 100° C, with solvent to solid ratio 5:1 (v/w) of particle size 0.5 cm for 160 minute give the highest percentage of oil (46.25 wt.%). The extracted oil was examined by HPLC.
Background: Glass ionomers have good biocompatibility and the ability to adhere to both enamel and dentin. However, they have certain demerits, mainly low tensile and compressive strengths. Therefore, this study was done to assess consistency and compressive strength of glass ionomer reinforced by different amount of hydroxyapatite. Materials and Methods: In this study hydroxyapatite materials were added to glass ionomer cement at different ratios, 10%, 15%, 20%, 25% and 30% (by weight). The standard consistency test described in America dental association (ADA) specification No. 8 was used, so that all new base materials could be conveniently mixed and the results would be of comparable value and the compressive strength test described by
... Show MoreIn this study, the stress-strength model R = P(Y < X < Z) is discussed as an important parts of reliability system by assuming that the random variables follow Invers Rayleigh Distribution. Some traditional estimation methods are used to estimate the parameters namely; Maximum Likelihood, Moment method, and Uniformly Minimum Variance Unbiased estimator and Shrinkage estimator using three types of shrinkage weight factors. As well as, Monte Carlo simulation are used to compare the estimation methods based on mean squared error criteria.
This study investigates the results of electrocoagulation (EC) using aluminum (Al) electrodes as anode and stainless steel (grade 316) as a cathode for removing silica, calcium, and magnesium ions from simulated cooling tower blowdown waters. The simulated water contains (50 mg/l silica, 508 mg/l calcium, and 292 mg/l magnesium). The influence of different experimental parameters, such as current density (0.5, 1, and 2 mA/cm2), initial pH(5,7, and 10), the temperature of the simulated solution(250C and 35 0C), and electrolysis time was studied. The highest removal efficiency of 80.183%, 99.21%, and 98.06% for calcium, silica, and magnesium ions, respectively, were obtained at a current de
... Show MoreThat water is the lifeblood and without it no life on our planet, he says in the Holy Koran: In the Name of God {{And We made from water every living thing}} truth of God Almighty (the prophets verse 30) The basis of the existence of settlements served human and a source of fresh water close to it easy access to it is used for domestic, agricultural, on a daily basis, even closer look at the map of Iraq to human settlement to find it is a signatory to both sides of the river are thick and less as we moved away from the source of water until they make up a scene like a necklace the river and the stones of cities and settlements served, was the ancient civilizations, countries and capitals Throughout history, choose sites near sour
... Show MoreThe settlement rate and pore water pressure dissipation rate are mainly controlled by the permeability of soil. Both laboratory and field tests show that the permeability is varied during the loading and consolidation process. It is known that consolidation process is accompanied by decrease in void ratio which leads to decrease in the coefficient of permeability. The importance of the decrease of the coefficient of permeability on the time rate of settlement and pore water pressure needs to be investigated.
This paper takes into account the change in coefficient of permeability during consolidation and studies its effect on consolidation characteristics of a clay layer. The finite element method is used in the analysis and the packag
Well-dispersed Cu2FeSnSe4 (CFTSe) nanoparticles were first synthesized using the hot-injection method. The structure and phase purity of as-synthesized CFTSe nanoparticles were examined by X-ray diffraction (XRD) and Raman spectroscopy. Their morphological properties were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The average particle sizes of the nanoparticles were about 7-10 nm. The band gap of the as-synthesized CFTS nanoparticles was determined to be about 1.15 eV by ultraviolet-visible (UV-Vis) spectrophotometry. Photoelectrochemical characteristics of CFTSe nanoparticles were also studied, which indicated their potential application in solar energy water splitting.
Granular carbon can be used after conventional filtration of suspended matter or, as a combination of filtration - adsorption medium. The choice of equipment depends on the severity of the organic removal problem, the availability of existing equipment, and the desired improvement of adsorption condition.
Design calculations on dechlorination by granular - carbon filters considering the effects of flow rate, pH , contact time, head loss and bed expansion in backwashing , particle size, and physical characteristics were considered assuming the absence of bacteria or any organic interface .
The research was conducted between 2017 and 2019 at the College of Agricultural Engineering Sciences and Laboratory of Plant Tissue Culture for Postgraduate Studies at the University of Baghdad. One experiment used a totally random design. The experiment examined the effects of PEG (Polyethylene glycol) at concentrations of 0, 2, 4, 6, and 8% on the development of three sunflower types (Ishaqi-1, Aqmar, and AL-Haja) exposed to UV-C rays for 40 minutes as a result of the growing of the juvenile peduncle outside the live body. The aim of the study was to better comprehend the physiological and biochemical changes caused by water stress on the callus of several sunfl