Crystalline In2O3 Thin films have been prepared by flash evaporation. We have studied the crystal structure of as deposited at 303K and annealed at 523K using X-ray diffraction. The Hall Effect measurements confirmed that electrons were predominant charges in the conduction process (i.e n-type).It is found that the absorption coefficient of the prepared films decreases with increasing Ta. The d.c conductivity study showed that the conductivity increase with increasing Ta , whereas the activation energy decreases with increasing Ta. Also we study the barrier tunneling diode for In2O3/Si heterostructure grown by Flash evaporation technique. (capacitance-voltage C-V) spectroscopy measurements were performed at 303 K and at the annealing temperature 523K. The built in voltage has been determined and it depends strongly on the annealing process of the heterojunction. From all above measurements we assumed an energy band diagram for In2O3 /Si(P-type) heterojunction.
The A2?u-X1?g+ emission band system of 7LiH1 molecule has been calculated for Lambda doubling. The relation between wave number ?p , ?Q , ?R conducted the energies of the state of rotation F (J), and (J + 1) with rotational quantum number J, respectively, of 7LiH1 molecule for statehood A2?u using the rotation, fixed vibrational states of both the ground and raised crossovers vibrational against ???= 0 to V ' = 0-4using rotational levels J = 0 to J = 20 have found.
Thin films of Nb2O5 have been successfully deposited using the DC reactive magnetron sputtering technique to manufacture NH3 gas sensors. These films have been annealed at a high temperature of 800°C for one hour. The assessment of the Nb2O5 thin films structural, morphological, and electrical characteristics was carried out using several methods such as X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), Hall effect measurements, and sensitivity assessments. The XRD analysis confirms the polycrystalline composition of the Nb2O5 thin films with a hexagonal crystal structure. Furthermore, the sensitivity, response time, and recovery time of the gas sensor were evaluated for the Nb2O5 thin film
... Show MoreThe world's renewable energy sources have taken on great importance, for its cleanness and its environmental effects as well as being a renewable source, Increased demand for fossil energy sources is also causing global warming and climate change. Iraq is an appropriate area for renewable energy This study shows that renewable alternative energy has not been used sufficiently enough at present. But this energy can play an important role in the future of renewable energy in Iraq. This research aims to study the renewable energy in Iraq (solar energy) and it is appropriate to develop this alternative energy for crude oil, which is characterized by the use of the most appropriate and less economical and more environmentally friendly. Solar
... Show MoreIn this research the a-As flims have been prepared by thermal evaporation with thickness 250 nm and rata of deposition r_d(1.04nm/sec) as function to annealing temperature (373 and 473K), from XRD analysis we can see that the degree of crystalline increase with T_a, and I-V characteristic for dark and illumination shows that forward bias current varieties approximately exponentially with voltage bias. Also we found that the quality factor and saturation current dependence on annealing temperatures.
In this research the a-As flims have been prepared by thermal evaporation with thickness 250 nm and rata of deposition (1.04nm/sec) as function to annealing temperature (373 and 373K), from XRD analysis we can see that the degree of crystalline increase with , and I-V characteristic for dark and illumination shows that forward bias current varieties approximately exponentially with voltage bias. Also we found that the quality factor and saturation current dependence on annealing temperatures.
In this paper, CdS/Si hetrojunction solar cell has been made by
Chemical Bath Deposition (CBD) of CdS thin film on to
monocrystalline silicon substrate. XRD measurements approved that
CdS film is changing the structure of CdS films from mixed
hexagonal and cubic phase to the hexagonal phase with [101]
predominant orientation. I-V characterization of the hetrojunction
shows good rectification, with high spectral responsivity of 0.41
A/W, quantum efficiency 90%,and specific detectivity 2.9*1014
cmHz1/2W -1 .
Assessment of annual wind energy potential for three selected sites in Iraq has been analyzed in the present work. The wind velocities data from August 2014 to July 2015 were collected from the website of Weather Underground Organization (WUO) at stations elevation (35m, 32m, and 17m) for Baghdad, Najaf, and Kut Al-Hai respectively. Extrapolation of stations elevation and wind velocities was used to estimate wind velocities at (60m, 90m, and 120m). The objectives are to analyze the wind speed data and assess the wind energy potential for wind energy applications. Computer code for MATLAB software has been developed to solve the mathematical model. The results are presented as a monthly and annual average for wind velocities, standard deviat
... Show MoreAbstract: Recently, there is increasing interest in using mode-division multipelexing (MDM) technique to enhace data rate transmission over multimode fibers. In this technique, each fiber mode is treated as a separate optical carrier to transfer its own data. This paper presents a broadband, compact, and low loss three-mode (de)multiplexer designed for C+L band using subwavelength grating (SWG) technology and built-in silicon-on-insulator SOI platform. SWG offers refractive index engineering for wider operating bandwidth and compact devices compared to conventional ones. The designed (de)multiplex deals with three modes (TE0, TE1, and TE2) and has a loss > -1 dB and crosstalk < −15 dB, and its operation c
... Show MoreThis study thoroughly investigates the potential of niobium oxide (Nb2O5) thin films as UV-A photodetectors. The films were precisely fabricated using dc reactive magnetron sputtering on Si(100) and quartz substrates, maintaining a consistent power output of 50W while varying substrate temperatures. The dominant presence of hexagonal crystal structure Nb2O5 in the films was confirmed. An increased particle diameter at 150°C substrate temperature and a reduced Nb content at higher substrate temperatures were revealed. A distinct band gap with high UV sensitivity at 350 nm was determined. Remarkably, films sputtered using 50W displayed the highest photosensitivity at 514.89%. These outstanding optoelectronic properties highlight Nb2O5 thin f
... Show More