Preferred Language
Articles
/
bsj-2548
Parabola Dish and Cassegrain Concentrators to Improve Solar Cell Conversion Efficiency
...Show More Authors

New designs of solar using ray tracing program, have been presented for improved the performance and the out put power of the silicon solar cell, as well as reducing the cost of system working by solar energy. Two dimensional solar concentrator (Fresnel lenses) and three dimensional concentrators (parabola dish and cassegrain) were used as concentrator for photovoltaic applications (CPV). The results show that the performance efficiency and out power for crystalline silicon solar cells are improved.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Oct 29 2020
Journal Name
The 11th International Renewable Energy Congress (irec 2020)
Thermal efficiency Optimization of the evacuated tube solar water heater system by using mirror flat reflector
...Show More Authors

In this paper a comparison of the experimental of evacuated tube solar water heater systems with and without mirror flat reflector. The aim of using the reflector to improve thermal efficiency, and the data gathered which are (temperature, solar irradiation and time) for three days were compared. the results from compared data the temperature lower increase in evacuated tube solar water heater system without reflector than the temperature increase in evacuated tube solar water heater system with reflector .The results show (53, 39, 35) % for three days respectively that the evacuated tube solar water heater system with reflector has higher thermal efficiencies than the results (47, 28, 30) % for three days respectively thermal efficiencies

... Show More
View Publication
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Progress In Industrial Ecology, An International Journal
Effect of V, In and Cu doping on properties of p-type ZnSe/Si heterojunction solar cell
...Show More Authors

View Publication
Scopus (16)
Crossref (19)
Scopus Crossref
Publication Date
Sun Jan 06 2019
Journal Name
Progress In Industrial Ecology – An International Journal,
Effect of V, In and Cu doping on properties of p-type ZnSe/Si heterojunction solar cell
...Show More Authors

The enhancement of ZnSe/Si Heterojunction by adding some elements (V, In and Cu) as impurities is the main goal because they contribute to the manufacturing of renewable energy equipment, such as solar cells. This paper describes the preparation of thin films ZnSe with V, In and Cu doped using thermal evaporation method with a vacuum of 10–5 Torr. The thin film was obtained from this work could be applied in heterojunction solar cell because of several advantages including high absorption coefficient value and direct band gap. The samples prepared on a glass and n-type Si wafer substrate. These films have been annealed for 1 h in 450 K. X-ray diffraction XRD results indicated that ZnSe thin film possesses poly-crystalline structure after

... Show More
View Publication
Publication Date
Mon Apr 10 2023
Journal Name
The European Physical Journal Plus
Improved performance of D149 dye-sensitized ZnO-based solar cell under solvents activation effect
...Show More Authors

View Publication
Crossref (3)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
The 2nd Universitas Lampung International Conference On Science, Technology, And Environment (ulicoste) 2021
Organic-inorganic ITO/CuPc/CdS/CuPc/Al solar cell prepared via pulsed laser deposition
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Wed Sep 02 2020
Journal Name
Iraqi Journal Of Applied Physics
Heterojunction Solar Cell Based on Highly-Pure Nanopowders Prepared by DC Reactive Magnetron Sputtering
...Show More Authors

In this work, a novel design for the NiO/TiO2 heterojunction solar cells is presented. Highly-pure nanopowders prepared by dc reactive magnetron sputtering technique were used to form the heterojunctions. The electrical characteristics of the proposed design were compared to those of a conventional thin film heterojunction design prepared by the same technique. A higher efficiency of 300% was achieved by the proposed design. This attempt can be considered as the first to fabricate solar cells from highly-pure nanopowders of two different semiconductors.

View Publication Preview PDF
Publication Date
Sat Mar 26 2016
Journal Name
Journal Of Materials Science: Materials In Electronics
Hydrothermal deposition of CdS on vertically aligned ZnO nanorods for photoelectrochemical solar cell application
...Show More Authors

View Publication
Scopus (24)
Crossref (19)
Scopus Clarivate Crossref
Publication Date
Thu May 05 2022
Journal Name
Journal Of Taibah University For Science
Innovative economic anthocyanin dye source for enhancing the performance of dye-sensitized solar cell
...Show More Authors

View Publication
Scopus (10)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Mon Aug 27 2018
Journal Name
Al-khwarizmi Engineering Journal
Efficiency Enhancement of a Dual-axis Solar PV Panel Tracker Using Water-Flow Double Glazing Technique
...Show More Authors

The fall angle of sun rays on the surface of a photovoltaic PV panel and its temperature is negatively affecting the panel electrical energy produced and efficiency. The fall angle problem was commonly solved by using a dual-axis solar tracker that continually maintains the panel orthogonally positioning to the sun rays all day long. This leads to maximum absorption for solar radiation necessary to produce maximum amount of energy and maintain high level of electrical efficiency. To solve the PV panel temperature problem, a Water-Flow Double Glazing WFDG technique has been introduced as a new cooling tool to reduce the panel temperature. In this paper, an integration design of the water glazing system with a dual-axis tracker has been ac

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Conversion of Lignocellulosic Material Into Fermentable Sugars
...Show More Authors

Enzymatic hydrolysis process of lignocellulosic biomass materials is difficult because of inherent structural features of biomass, which represents barriers that prevent complete hydrolysis; therefore, pretreatment techniques are necessary to render biomass highly digestible in enzymatic hydrolysis process. In this research, (non?) oxidative short-term lime pretreatment of willow wood was used. A weight of  11.40 g of willow wood was mixed with an excess of calcium hydroxide (0.4 g Ca(OH)2/g raw biomass) and water loading (15 g/g raw biomass). Lime pretreatment was carried out for various periods of time including 1, 2, 3.5, 5 and 6 h, with temperatures at 100, 113, 130, 147 and 1600C, and oxygen pressures as o

... Show More
View Publication Preview PDF
Crossref