Java is a high-level , third generation programming language were introduced Javaoptics Open Source Physics (OSP) as a new simulation for design one of the most important interference optical coating called antireflection coating. It is recent developments in deign thin-film coatings. (OSP) shows multiple beam interferences from a parallel dielectric thin film and the evolution of reflection factors. It is simple to use and efficiently also can serve educational purposes. The obtained results have been compared with needle method
The present paper analyzes the signal emitting from the Reticle during changing the spot size of laser falling on the disk and shows the optimum frequency and the amount of energy window in different patterns of modulator (Reticle). All results are obtained by establishing a special program named “Disk optical modulator version 3" using the language visual basic 6 ahich contains many parameters. All models of optical modulator consist of twenty sectors, ten sectors are opaque and other ten sectors are transmitted for the laser. The number of sectors depends on several factors as chopping frequency, power transparent and modulation transfer function. It has been demonstrated by simulations, the optimal
... Show MoreExtraction and preparation of red organic dye from beetroot plant in different concentrations by using the solvent extraction process. Ethanol was the solvent used to prepare five different concentrations at the ratio of (Dye: Ethanol) abbreviated (D: E) 5:0,4:1, 3:2, 2:3,1:4. The optical, structural, and morphological properties are studied for the samples. The results appeared using the UV-Vis spectroscope the maximum peak of absorption (A) spectrum at wavelength Aλmax=480 nm when the transmittance (T) at the same wavelength 25% and the reflectivity 0.8%. Florescent (F) spectrum of beetroot dye is measured at wavelength Fλmax=535nm achieved to redshift about Δλ=55 nm. Also, measured the energy band gap
... Show MoreAbstract: This paper presents the results of the structural and optical analysis of CdS thin films prepared by Spray of Pyrolysis (SP) technique. The deposited CdS films were characterized using spectrophotometer and the effect of Sulfide on the structural properties of the films was investigated through the analysis of X-ray diffraction pattern (XRD). The growth of crystal became stronger and more oriented as seen in the X-ray diffraction pattern. The studying of X-ray diffraction showed that; all the films have the hexagonal structure with lattice constants a=b=4.1358 and c=6.7156A°, the crystallite size of the CdS thin films increases and strain (ε) as well as the dislocation density (δ) decreases. Also, the optical properties of the
... Show MoreThis contribution aims to investigate volume-dependent thermal and mechanical properties of the two most studied phases of molybdenum nitride (c-MoN and h-MoN) by means of the quasi-harmonic approximation approach (QHA) via first-principles calculations up to their melting point and a pressure of 12 GPa. Lattice constants, band gaps, and bulk modulus at 0 K match corresponding experimental measurements well. Calculated Bader’s charges indicate that Mo–N bonds exhibit a more ionic nature in the cubic MoN phase. Based on estimated Gibbs free energies, the cubic phase presents thermodynamic stability higher than that detected for hexagonl, with no phase transition observed in the selected T–P conditions as detected experimentall
... Show MoreVanadium dioxide nanofilms are one of the most essential materials in electronic applications like smart windows. Therefore, studying and understanding the optical properties of such films is crucial to modify the parameters that control these properties. To this end, this work focuses on investigating the opacity as a function of the energy directed at the nanofilms with different thicknesses(1–100) nm. Effective mediator theories(EMTs), which are considered as the application of Bruggeman’s formalism and the Looyenga mixing rule, have been used to estimate the dielectric constant of VO2 nanofilms. The results show different opacity behaviors at different wavelength ranges(ultraviolet, visible, and infrared). The results depict that th
... Show MoreNon thermal argon plasma needle at atmospheric pressure was constructed. The experimental set up was based on simple and low cost electric components that generate electrical field sufficiently high at the electrodes to ionize various gases which flow at atmospheric pressure. A high AC power supply was used with 9.6kV peak to peak and 33kHz frequency. The plasma was generated using two electrodes. The voltage and current discharge waveform were measured. The temperature of Ar gas plasma jet at different gas flow rate and distances from the plasma electrode was also recorded. It was found that the temperature increased with increasing frequency to reach the maximum value at 15 kHz, and that the current leading the voltage, which demonstra
... Show MoreIn this work we fabrication holographic optical element diffraction grating thickness 40?m and mirror90?m by using dichromated gelatin,to perform that we have to use the Nd-yaG laser doubling frequency of wavelenght (532)nm and its powers of (80)mWatt.we have studyed the thickness and concentration dichromat effect in mirror reflaction ,effect of angle of reconstruction beam in band width and diffraction efficiency ,study effect gelatin hardener of the diffraction efficiency.
Studied the optical properties of the membranes CdS thin containing different ratios of ions cadmium to sulfur attended models manner spraying chemical gases on the rules of the glass temperature preparation (350c) were calculated energy gap allowed direct these membranes as observed decrease in the value of the energy gap at reducing the proportion ofsulfur ions as absorption coefficient was calculated
Linear and nonlinear optical properties of epoxy/ Al2O3 nanocomposites system were studied for epoxy neat and (0.5, 1.5, 3, and 5) % Al2O3 nanocomposites.The band gap of epoxy and its nanocomposites was obtained at these weight ratios. Nonlinear optical properties experiments were performed using Q-switched Nd:YAG laser z-scan system.These experiments were carried out for different parameters: wavelengths (1064 nm and 532 nm), laser intensities (0.530, 0.679, and 0.772) GW/cm2 and weight ratio of Al2O3 nanocomposites. The results showed that the band gaps were decreased with increasing the weight ratio of nanoalumina except at 5wt% and the nonlinear refractive index coefficient is directly proportional to the incident intensities while o
... Show MoreBending effects on the transmission of optical signal are investigated on a single mode
optical fiber (SMOF) of 10 m length, core radius of 5 μm and optical refractive index difference
0.003. The bending radii (R) were between 0.08 and 0.0015 m. A great decrease in the amplitude is
shown for radii below 0.01 m. Sudden break down occurs for radii less than 0.0015 m. Birefringence
(B) is difficult to measure for long fibers. Meanwhile, B was found by comparing with calibrated
fiber of the same properties but of length of 0.075 m. The results show an increase in propagation
constant (Δβ) and the decrease in beat length (Lb), and show that bending decreases the critical radius
of curvature (Rc) related to B. The chang