Preferred Language
Articles
/
bsj-2483
An Efficient Numerical Method for Solving Volterra-Fredholm Integro-Differential Equations of Fractional Order by Using Shifted Jacobi-Spectral Collocation Method
...Show More Authors

The aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Nov 24 2017
Journal Name
Journal Of Engineering
A New Analytic Method to Tune a Fractional Order PID Controller
...Show More Authors

This paper proposes a new method to tune a fractional order PID controller. This method utilizes both the analytic and numeric approach to determine the controller parameters. The control design specifications that must be achieved by the control system are gain crossover frequency, phase margin, and peak magnitude at the resonant frequency, where the latter is a new design specification suggested by this paper. These specifications results in three equations in five unknown variables. Assuming that certain relations exist between two variables and discretizing one of them, a performance index can be evaluated and the optimal controller parameters that minimize this performance index are selected. As a case study, a thir

... Show More
View Publication Preview PDF
Publication Date
Thu May 01 1997
Journal Name
Polymer-plastics Technology And Engineering
An Efficient Method for Real Gas Pseudopressure Calculation
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Mar 30 2024
Journal Name
Journal Of Kufa For Mathematics And Computer
Approximate Solution of Linear and Nonlinear Partial Differential Equations Using Picard’s Iterative Method
...Show More Authors

Publication Date
Sun Jun 07 2015
Journal Name
Baghdad Science Journal
Direct method for Solving Nonlinear Variational Problems by Using Hermite Wavelets
...Show More Authors

In this work, we first construct Hermite wavelets on the interval [0,1) with it’s product, Operational matrix of integration 2^k M×2^k M is derived, and used it for solving nonlinear Variational problems with reduced it to a system of algebric equations and aid of direct method. Finally, some examples are given to illustrate the efficiency and performance of presented method.

View Publication Preview PDF
Crossref
Publication Date
Sun Jul 01 2018
Journal Name
Computers & Mathematics With Applications
Analytical and numerical solutions for the nonlinear Burgers and advection–diffusion equations by using a semi-analytical iterative method
...Show More Authors

View Publication
Crossref (24)
Crossref
Publication Date
Sun Jun 07 2015
Journal Name
Baghdad Science Journal
A Solution of Second Kind Volterra Integral Equations Using Third Order Non-Polynomial Spline Function
...Show More Authors

In this paper, third order non-polynomial spline function is used to solve 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of this method, and to compare the computed results with other known methods.

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Sep 06 2015
Journal Name
Baghdad Science Journal
Oscillations of Third Order Half Linear Neutral Differential Equations
...Show More Authors

In this paper the oscillation criterion was investigated for all solutions of the third-order half linear neutral differential equations. Some necessary and sufficient conditions are established for every solution of (a(t)[(x(t)±p(t)x(?(t) ) )^'' ]^? )^'+q(t) x^? (?(t) )=0, t?t_0, to be oscillatory. Examples are given to illustrate our main results.

View Publication Preview PDF
Crossref
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
Recent modification of Homotopy perturbation method for solving system of third order PDEs
...Show More Authors

This paper presents new modification of HPM to solve system of 3 rd order PDEs with initial condition, for finding suitable accurate solutions in a wider domain.

Scopus (19)
Scopus
Publication Date
Wed Mar 01 2023
Journal Name
Baghdad Science Journal
Traveling Wave Solutions of Fractional Differential Equations Arising in Warm Plasma
...Show More Authors

This paper aims to study the fractional differential systems arising in warm plasma, which exhibits traveling wave-type solutions. Time-fractional Korteweg-De Vries (KdV) and time-fractional Kawahara equations are used to analyze cold collision-free plasma, which exhibits magnet-acoustic waves and shock wave formation respectively. The decomposition method is used to solve the proposed equations. Also, the convergence and uniqueness of the obtained solution are discussed. To illuminate the effectiveness of the presented method, the solutions of these equations are obtained and compared with the exact solution. Furthermore, solutions are obtained for different values of time-fractional order and represented graphically.

View Publication Preview PDF
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2020
Journal Name
International Journal Of Nonlinear Analysis And Applications
Two Efficient Methods For Solving Non-linear Fourth-Order PDEs
...Show More Authors

This paper studies a novel technique based on the use of two effective methods like modified Laplace- variational method (MLVIM) and a new Variational method (MVIM)to solve PDEs with variable coefficients. The current modification for the (MLVIM) is based on coupling of the Variational method (VIM) and Laplace- method (LT). In our proposal there is no need to calculate Lagrange multiplier. We applied Laplace method to the problem .Furthermore, the nonlinear terms for this problem is solved using homotopy method (HPM). Some examples are taken to compare results between two methods and to verify the reliability of our present methods.

Scopus (10)
Scopus