Preferred Language
Articles
/
bsj-2482
St-Polyform Modules and Related Concepts
...Show More Authors

In this paper, we introduce a new concept named St-polyform modules, and show that the class of St-polyform modules is contained properly in the well-known classes; polyform, strongly essentially quasi-Dedekind and ?-nonsingular modules. Various properties of such modules are obtained. Another characterization of St-polyform module is given. An existence of St-polyform submodules in certain class of modules is considered. The relationships of St-polyform with some related concepts are investigated. Furthermore, we introduce other new classes which are; St-semisimple and ?-non St-singular modules, and we verify that the class of St-polyform modules lies between them.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun May 28 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Weakly Relative Quasi-Injective Modules
...Show More Authors

    Let R be a commutative ring with unity and let M, N be unitary R-modules. In this research, we give generalizations for the concepts: weakly relative injectivity, relative tightness and weakly injectivity of modules. We call M weakly N-quasi-injective, if for each f  Hom(N,) there exists a submodule X of  such that  f (N)  X ≈ M, where  is the quasi-injective hull of M. And we call M N-quasi-tight, if every quotient N / K of N which embeds in  embeds in M. While we call M weakly quasi-injective if M is weakly N-quasiinjective for every finitely generated R-module N.         Moreover, we generalize some properties of weakly N-injectiv

... Show More
View Publication Preview PDF
Publication Date
Mon May 22 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Dual Notions of Prime Modules
...Show More Authors

       Let R be a commutative ring with unity .M an R-Module. M is called coprime module     (dual notion of prime module) if ann M =ann M/N for every proper submodule N of M   In this paper we study coprime modules we give many basic properties of this concept. Also we give many characterization of it under certain of module.

View Publication Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Generalized Amply Cofinitely Supplemented Modules
...Show More Authors

Let R be an associative ring with identity. An R-module M is called generalized
amply cofinitely supplemented module if every cofinite submodule of M has an
ample generalized supplement in M. In this paper we proved some new results about
this conc- ept.

View Publication Preview PDF
Publication Date
Wed Feb 22 2023
Journal Name
Iraqi Journal Of Science
Small Pointwise M-Projective Modules
...Show More Authors

Let R be a ring and let M be a left R-module. In this paper introduce a small pointwise M-projective module as generalization of small M- projective module, also introduce the notation of small pointwise projective cover and study their basic properties.
.

View Publication Preview PDF
Publication Date
Thu Jul 01 2021
Journal Name
Journal Of Physics: Conference Series
T-Small Quasi-Dedekind modules
...Show More Authors
Abstract<p>Let Q be a left Module over a ring with identity ℝ. In this paper, we introduced the concept of T-small Quasi-Dedekind Modules as follows, An R-module Q is T-small quasi-Dedekind Module if, <inline-formula> <tex-math><?CDATA $\forall \,w\,\in En{d}_{R}(Q),\,w\ne 0$?></tex-math> <math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mrow> <mo>∀</mo> <mspace width="0.25em"></mspace> <mi>w</mi> <mspace width="0.25em"></mspace> <mo></mo></mrow></math></inline-formula></p> ... Show More
View Publication
Scopus Crossref
Publication Date
Thu Nov 17 2022
Journal Name
Journal Of Discrete Mathematical Sciences And Cryptography
On large-hollow lifting modules
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Sun Jun 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Quasi-Fully Cancellation Fuzzy Modules
...Show More Authors

  In this paper it was presented the idea quasi-fully cancellation fuzzy modules and we will denote it by  Q-FCF(M), condition universalistic idea quasi-fully cancellation modules It .has been circulated to this idea quasi-max fully cancellation fuzzy modules and we will denote it by Q-MFCF(M). Lot of results and properties have been studied in this research.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Nov 27 2019
Journal Name
Iraqi Journal Of Science
ON T-HOLLOW-LIFITING MODULES
...Show More Authors

     Let  be an R-module, and let  be a submodule of . A submodule  is called -Small submodule () if for every submodule  of  such that  implies that . In our work we give the definition of -coclosed submodule and -hollow-lifiting modules with many properties.

View Publication Preview PDF
Scopus Crossref
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
Essential T- Weak Supplemented Modules
...Show More Authors

An R-module M is called ET-H-supplemented module if for each submodule X of M, there exists a direct summand D of M, such that T⊆X+K if and only if T⊆D+K, for every essential submodule K of M and T M. Also, let T, X and Y be submodules of a module M , then we say that Y is ET-weak supplemented of X in M if T⊆X+Y and (X⋂Y M. Also, we say that M is ET-weak supplemented module if each submodule of M has an ET-weak supplement in M. We give many characterizations of the ET-H-supplemented module and the ET-weak supplement. Also, we give the relation between the ET-H-supplemented and ET-lifting modules, along with the relationship between the ET weak -supplemented and ET-lifting modules.

View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sun Dec 31 2023
Journal Name
College Of Islamic Sciences
The most prominent philosophical and rhetorical concepts in the perspective of philosophers and theologians
...Show More Authors

     This research aims to clarify and define the most important philosophical and rhetorical concepts to which many philosophical and rhetorical issues refer، since they have an effective role in the diversity and difference of intellectual schools، which are indispensable in proving major dogmatic issues، such as the concept of (existence، being، essence، and authenticity). Existence or Essence in contrast to the consideration of the other concept)، because it is one of the complex concepts and common words that carry different connotations among thinkers.

   And from (the rule of judging something is a branch of its perception)، the researchers began to define these concepts، as evidence of the sincerity of perce

... Show More
View Publication Preview PDF