At a temperature of 300 K, a prepared thin film of Ag doped with different ratios of CdO (0.1, 0.3, 0.5) % were observed using pulse laser deposition (PLD). The laser, an Nd:YAG in ?=1064 nm, used a pulse, constant energy of 600 mJ ,with a repetition rate of 6 Hz and 400 pulses. The effect of CdO on the structural and optical properties of these films was studied. The structural tests showed that these films are of a polycrystalline structure with a preferred orientation in the (002) direction for Ag. The grain size is positively correlated with the concentration of CdO. The optical properties of the Ag :CdO thin film we observed included transmittance, absorption coefficient, and the energy gap in the wavelength range of 300-1100 nm. The prepared films, direct energy gap is negatively correlated to concentration of CdO.
Dielectric measurements were carried on pure and doping potassium sulfate with copper and iron ions samples at 1wt.% and 3wt.% for both of copper and iron. The dielectric constant (ε') decreases exponentially from 2.8 to 1.5 as frequency increase for both dopant which is attributed to the space charge and structural distortion. The dielectric loss (ε") for Cu dopant decrease gradually with frequency. The same behavior for 1%Fe dopant while its 3%Fe doping started from 0.27 then decrease exponential. Band gaps for all samples almost constant around 6 eV.
Thin films samples of Bismuth sulfide Bi2S3 had deposited on
glass substrate using thermal evaporation method by chemical
method under vacuum of 10-5 Toor. XRD and AFM were used to
check the structure and morphology of the Bi2S3 thin films. The
results showed that the films with law thickness <700 nm were free
from any diffraction peaks refer to amorphous structure while films
with thickness≥700 nm was polycrystalline. The roughness decreases
while average grain size increases with the increase of thickness. The
A.C conductivity as function of frequency had studied in the
frequency range (50 to 5x106 Hz). The dielectric constant,
polarizability showed significant dependence upon the variation of
thic
Films of silver oxide of different thickness have been prepared by the chemical spray paralysis. Transmission and absorption spectra have recorded in order to study the effect of increasing thickness on some optical parameter such as reflectance, refractive index , and dielectric constant in its two parts . This study reveals that all these paramters affect by increasing the thickness .
In this work, SnO2 and (SnO2)1-x(ZnO)x composite thin films with different ZnO atomic ratios (x=0, 5, 10, 15 and 20%) were prepared by pulsed laser deposition technique on clean glass substrates at room temperature without any treatment. The deposited thin films were characterized by x-ray diffraction atomic force microscope and UV-visible spectrophotometer to study the effect of the ZnO atomic ratio on their structural, morphological and optical properties. It was found that the crystallinety and the crystalline size vary according to ZnO atomic ratio. The surface appeared as longitudinal structures which was convert to spherical shapes with increasing ZnO atomic ratio. The optical trans
... Show MoreThis study describe the effect of temperature on the optical
properties of nickel(ii) phthalocyanine tetrasulfonic acid tetrasodium
salt (NiPcTs) organic thin films which are prepared by spin coating
on indium tin oxide (ITO-glass). The optical absorption spectra of
these thin films are measured. Present studies reveal that the optical
band gap energies of NiPcTs thin films are dependent on the
annealing temperatures. The optical band gap decreases with increase
in annealing temperature, then increased when the temperature rising
to 473K. To enhance the results of Uv-Vis measurements and get
more accurate values of optical energy gaps; the Photoluminescence
spectra of as-deposited and annealed NiPcTs thin fi
Blends of Polymethyl methacrylate (PMMA)/polyvinyl alcohol (PVA) doped with 2% weight percentage of Sn were prepared with different blend ratios using casting technique. The measurements of A.C conductivity σa.c within the frequency range (25kHz – 5MHz) of undoped and Sn doped PMMA/PVA blends obeyed the relationship σ= Aws were the value of s within the range 0 > s > 1. The results showed that σa.c increases with the increase of frequency. The exponent s showed preceding increase with the increase of PVA content for PMMA/PVA blends doped with Sn. The dielectric constant, dielectric loss, A.C electrical conductivity are varied with the concentration of PVA in the blend and frequency of applied electrical field.
Optical fibers were produced by the system manufactured for this purpose and then, PMMA core of polymer optical fiber (POF) and PMMA doped Rhodamine B (RhB) claddings were studied and determine their UV–vis absorption and emission. The study adopted the mechanism of lateral pumping of the product polymer optical fiber by using laser with 404 nm excitation to study optical specifications of the factory fiber. It was noted that there were blue shift in maximum peak wavelength in absorption and fluorescence from the doped polymer before use it as clad. The obtained results by using the doping polymer with (RhB) for clad the amplified spontaneous emission ASE seems in fluorescence study. The side excitation shows that there were no an over
... Show MoreA random laser has been produced using Fluorescein dye solution in water, with concentration of (8 10-5 M); doped with (0.001g) TiO2 Nanoparticles with the particle size of (15.7 nm). A blue diode laser of 450 nm wavelength has been used as an optical pumping source. The wavelength of the random laser was 523 nm and the intensity was 5.44 mW
Solar cells thin films were prepared using polyvinyl alcohol (PVA) as a thin film, with extract of natural pigment from local flower. A concentration of 0.1g/ml of polyvinyl alcohol solution in water was prepared for four samples, with various concentrations of plant pigment (0, 15, 25 and 50) % added to each of the four solutions separately for preparing (PVA with low concentrated dye , PVA with medium concentrated dye and PVA with high concentrated dye ) thin films respectively . Ultraviolet absorption regions were obtained by computerized UV-Visible (CECIL 2700). Optical properties including (absorbance, reflectance, absorption coefficient, energy gap and dielectric constant) via UV- Vis were tested, too. Fourier transform infra
... Show MoreLithium doped Nickel-Zinc ferrite material with chemical formula Ni0.9−2x Zn0.1LixFe2+xO4, where x is the ratio of lithium ions Li+ (x = 0, 0.01, 0.02, 0.03 and 0.04) prepared by using sol-gel auto combustion technique. X-ray diffraction results showed that the material have pure cubic spinal structure with space group Fd-3m. The experimental values of the lattice constant (aexp) were decreased from 8.39 to 8.35 nm with doped Li ions. It was found that the decreasing of the crystallite size with addition of lithium ions concentration. The radius of tetrahedral (rtet) and octahedral (roct) site were computed from cation distribution. SEM images have been taken to show the morphology of compound. The dielectric parameters [dissipation fa
... Show More