A comparative investigation of gas sensing properties of SnO2 doped with WO3 based on thin film and bulk forms was achieved. Thin films were deposited by thermal evaporation technique on glass substrates. Bulk sensors in the shape of pellets were prepared by pressing SnO2:WO3 powder. The polycrystalline nature of the obtained films with tetragonal structure was confirmed by X-ray diffraction. The calculated crystalline size was 52.43 nm. Thickness of the prepared films was found 134 nm. The optical characteristics of the thin films were studied by using UV-VIS Spectrophotometer in the wavelength range 200 nm to 1100 nm, the energy band gap, extinction coefficient and refractive index of the thin film were 2.5 eV , 0.024 and 2.51, respectively. Hall measurements confirmed that the films are n-type. The NO2 sensing characteristics of the SnO2:WO3 sensors were studied with various temperatures and NO2 gas concentrations. Both thin film and bulk sensors showed maximum sensitivity at temperature of 250 oC. Thin film sensors showed enhanced response in comparison to that of pellets.
Additive aluminum powder to the polystyrene to prepare the composites Polystyrene– Aluminum.The samples were prepared by using mechanical compressed method at low pressure and a temperature 120°C. Measurements of absorbance and reflectance spectra were carried out by UV-Visible spectrophotometer , the effect of additive aluminum on the optical band gap Eop and optical constants ( refractive index n, extinction coefficient k ,dielectric constant ε and optical conductivity σop) were studied for the prepared composites . Results showed a decrease in the Eop with increasing perc
... Show MoreThe ZnTe alloy was prepared as deposited thin films on the glass substrates at a thickness of 400±20 nm using vacuum evaporation technique at pressure (1 × 10-5) mbar and room temperature. Then the thin films under vacuum (2 × 10-3 mbar) were annealing at (RT,100 and 300) °C for one hour. The structural properties were studied by using X-ray diffraction and AFM, the results show that the thin films had approached the single crystalline in the direction (111) as preferred orientation of the structure zinc-blende for cubic type, with small peaks of tellurium (Te) element for all prepared thin films. The calculated crystallite size (Cs) decreased with the increase in the anne
... Show MoreSmart thinking requires a continuous flexible systeroatic teaching in order that the lecturer can reach at easily, The Successful individuals in smart thin king are the most knowledgably with it, where the cognitive (intuitive- systematic) style has common bases with another cognitive styles in many traits, and these two concepts are the core of theorization of the rost important cognitive styles. The present study aims to measure the Smart thinking among university lecturers according to sex variable and recognize the statistically differences significance in the level of cognitive (intuitive- systematic) style among the university lecturers according to sex variable and recognize the correlation between smart thinki
... Show MoreIn this paper, a design of the broadband thin metamaterial absorber (MMA) is presented. Compared with the previously reported metamaterial absorbers, the proposed structure provides a wide bandwidth with a compatible overall size. The designed absorber consists of a combination of octagon disk and split octagon resonator to provide a wide bandwidth over the Ku and K bands' frequency range. Cheap FR-4 material is chosen to be a substate of the proposed absorber with 1.6 thicknesses and 6.5×6.5 overall unit cell size. CST Studio Suite was used for the simulation of the proposed absorber. The proposed absorber provides a wide absorption bandwidth of 14.4 GHz over a frequency range of 12.8-27.5 GHz with more than %90 absorp
... Show MoreThe spectacular film is a type of feature films which has specific elements that contribute in increasing the aesthetics of the shape in its structure. The researcher started studying this type of films by researching the spectacular film concept, the history of its development, who are its most important stars and then tackling the Indian cinema represented by Bollywood, which is considered a school for this type of film. The researcher addressed the most important influential elements that entre in its production as well as studying these elements that contribute to building the shape including the configuration, movements of cameras, lenses, the lighting, colors, costumes etc. and what influence they have in forming a special aestheti
... Show MoreTin dioxide (SnO2) were mixed with (TiO2 and CuO) with concentration ratio (50, 60, 70, 80 and 90) wt% films deposited on single crystal Si and glass substrates at (523 K) by spray pyrolysis technique from aqueous solutions containing tin (II) dichloride Dihydrate (SnCl2, 2H2O), dehydrate copper chloride (CuCl2.2H2O) and Titanium(III) chloride (TiCl3) with molarities (0.2 M). The results of electrical properties and analysis of gas sensing properties of films are presented in this report. Hall measurement showed that films were n-type converted to p- type as titanium and copper oxide added at (50) % ratio. The D.C conductivity measurements referred that there are two mechanisms responsible about the conductivity, hence it possess two act
... Show MoreIn this research, the electrical characteristics of glow discharge plasma were studied. Glow discharge plasma generated in a home-made DC magnetron sputtering system, and a DC-power supply of high voltage as input to the discharge electrodes were both utilized. The distance between two electrodes is 4cm. The gas used to produce plasma is argon gas which flows inside the chamber at a rate of 40 sccm. The influence of work function for different target materials (gold, copper, and silver), - 5cm in diameter and around 1mm thickness - different working pressures, and different applied voltages on electrical characteristics (discharge current, discharge potential, and Paschen’s curve) were studied. The results showed that the discharge cur
... Show More