The microbend sensor is designed to experience a light loss when force is applied to the sensor. The periodic microbends cause propagating light to couple into higher order modes, the existing higher order modes become unguided modes. Three models of deform cells are fabricated at (3, 5, 8) mm pitchand tested by using MMF and laser source at 850 nm. The maximum output power of (8, 5, 3)mm model is (3, 2.7, 2.55)nW respectively at applied force 5N and the minimum value is (1.9, 1.65, 1.5)nW respectively at 60N.The strain is calculated at different microbend cells ,and the best sensitivity of this sensor for cell 8mm is equal to 0.6nW/N.
In this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet func
Well integrity is a vital feature that should be upheld into the lifespan of the well, and one constituent of which casing, necessity to be capable to endure all the interior and outside loads. The casing, through its two basic essentials: casing design and casing depth adjustment, are fundamental to a unique wellbore that plays an important role in well integrity. Casing set depths are determined based on fracturing pressure and pore pressure in the well and can usually be obtained from well-specific information. Based on the analyzes using the improved techniques in this study, the following special proposition can be projected: The selection of the first class and materials must be done correctly and accurately in accordance with
... Show More1,3,4-oxadizole and pyrazole derivatives are very important scaffolds for medicinal chemistry. A literature survey revealed that they possess a wide spectrum of biological activities including anti-inflammatory and antitumor effects.
To describe the synthesis and evaluation of two classes of new niflumic acid (NF) derivatives, the 1,3,4-oxadizole derivatives (compounds 3 and (4A-E) and pyrazole derivatives (compounds 5 and 6), as EGFR tyrosine kinase inhibitors in silico and in vitro.
The designed compounds were synthesized using convent
Aromatic hydrocarbons present in Iraqi national surface water were believed to be raised principally from combustion of various petroleum products, industrial processes and transport output and their precipitation on surface water.
Polycyclic aromatic hydrocarbons (PAHs) were included in the priority pollutant list due to their toxic and carcinogenic nature. The concern about water contamination and the consequent human exposure have encouraged the development of new methods for
PAHs detection and removal.
PAHs, the real contaminants of petroleum matter, were detected in selected sites along Tigris River within Baghdad City in summer and winter time, using Shimadzu high performance liquid chromatography (HPLC) system.
Analysi
Lean Six Sigma methodologies and Ergonomics principles are the main pillars of this work given their importance in the implementation of continuous improvement in assembly workstations design. When looking at the introduction of the Ergonomics that has been affected by the integration of the Lean and Six Sigma for improvements, it is necessary to understand why these methodologies belong to each other and how they can be handled in the industrial field. The aim of the work seeks towards the impact of analyzing the integration of the basics tools of Lean and Six Sigma that enhanced Ergonomics highlighted the importance of using the priority matrix in the selection of the priority criteria. Two models of a system based on
... Show MoreJatropha L. is an exotic genus to Iraq and it has been cultivated in gardens for ornamental purposes because of the shiny red color of the flowers. The plant adapted to environmental conditions and succeeded in growing and blooming, which is why the species was interested to study. The species Jatropha integerrima Jacq. was examined and diagnosed for the first time in Iraq. Morphological and anatomical characteristics for leaves (considering that the variations are the most reliable and taxonomically important) were provided. The Phytochemical screening showed the presence of alkaloids, flavonoids, terpenes, tannins and saponins. The qualitative analysis by TLC indicated the presence of alkaloids and flavonoid that was detected by specia
... Show MoreThe aim of the currnet study to examine the effect of subclinical hypothyroidism (SCH) in diabetic patients on coagulation parameters. This retrospective case–control study involves 130 patients diagnosed with type 2 diabetes mellitus (T2DM), divided into 65 T2DM with newly diagnosed SCH and 65 euthyroid (EUT) T2DM patients without SCH. Fibrinogen (FIB) was significantly higher in SCH (508.2 ± 63.0 mg/dL) than EUT (428.1 ± 44.8 mg/dL). In the SCH patients, FIB correlated with several parameters, such as age (β = 0.396), body mass index (β = 0.578), glycated hemoglobin (β = 0.281), and activated partial thromboplastin time (β = 0.276). In conclusion SCH in DM patients appears to increase the magnitude of coagulopathy.
... Show MoreData scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for