The photostabilization? of poly vinyl chloride (PVC) ? films has been investigated by using diamine derivatives. The? (PVC) films were? contained 0.5% weight? of diamine derivatives which prepared by the method of casting. The photostabilizations? ?of these compounds were determined by monitoring the carbonyl index value with irradiation time. Also, the effect ?of concentrations of additives (range 0.1-0.5wt) on the rate of photostabilization? process was studied. Therefore we found? that a increased photostabilization rates was increase with increasing? concentrations of compound. Besides, the influence? on film thickness? of photostabilization process was also studied; ?and the results? showed that? the increasing of film thickness increase the rate of photostabilization. Also, the changes in the viscosity? of the averagee molecular weight, the degree? of deterioration (?) and the average number of chain scission (s) were tracked, it was concluded? that the random chain scission is always occurs in PVC film, also Quantum yield? of the chain? scission of? these compounds? was calculated. Several mechanisms? have been? suggested and according to experimental results obtained, these mechanisms are dependent on the structure? of? the additive, Among UV absorper? and radical? scavenger.
New derivatives of pyromellitamic diacids and pyromellitdiimides have been prepared by the reaction of one mole of pyromellitic dianhydride with two moles of aromatic amines, these derivatives were characterized by elemental analysis, FT-IR and melting point.
In this work 5-methylene-yl - (2-methy –oxazole-4-one) (1H) imidazole (1) were synthesized from the reaction of L-Histidine with acetic anhydride and which converted to the of 5-methylene-yl-(2-methyl 3-amino imidazole-4-one)-1H-imidazole (2) by reaction with hydrazine hydrate. Schiff bases (3-6) were synthesized from the reaction of compound (2) with different aromatic aldehyde. Reaction of compounds (3-6) with chloroacetyl chloride gives azetidinone one derivatives (7-10). These compounds were characterized by FT-IR and some of them with 1H-NMR and 13C-NMR spectroscopy.
The compound [G1] was prepared from the reaction of thiosemicarbazide with para-hydroxyphenylmethyl ketone in ethanol as a solvent. Then by sequence reactions prepared [G2] and [G3] compounds. The compound [G4] reaction with ethyl acetoacetoneto synthesized compound [G6] and acetyl acetone to synthesized compound [G5]. Reaction the [G3] with two different types of aldehydes in the present of pipredine to form new alkenes compounds [G7]and [G8].The compound [G3] reacted with hydrazine hydrate to formation[G4] with present the hydrazine hydrade 80% in (10) ml of absolute ethanol. Latter the compound [G4]reacted with different aldehydes with present the glacial acetic acid and the solvent was ethanol to formed the Schiff bases compounds[G9] an
... Show MoreThe present study was designed to synthesize a number of new Ceftriaxone derivatives by its involvement with a series of different amines, through the chemical derivatization of its 2-aminothiazolyl- group into an amide with chloroacetyl chloride, which on further conjugation with these selected amines will produce compounds with pharmacological effects that may extend the antimicrobial activity of the parent compound depending on the nature of these moieties.
Ceftriaxone was first equipped with a spacer arm (linker) by the action of chloroacetyl chloride in aqueous medium and then further reacted with seven different aliphatic and aromatic amines which resulted in the production of the aimed final target products. The syntheses
... Show MoreMR Younus, Al-A'DAB, 2011
The compound [G1] was prepared from the reaction of thiosemicarbazide with para-hydroxyphenylmethyl ketone in ethanol as a solvent. Then by sequence reactions prepared [G2] and [G3] compounds. The compound [G4] reaction with ethyl acetoacetoneto synthesized compound [G6] and acetyl acetone to synthesized compound [G5]. Reaction the [G3] with two different types of aldehydes in the present of pipredine to form new alkenes compounds [G7]and [G8].The compound [G3] reacted with hydrazine hydrate to formation[G4] with present the hydrazine hydrade 80% in (10) ml of absolute ethanol. Latter the compound [G4]reacted with different aldehydes with present the glacial acetic acid and the solvent was ethanol to formed the Schiff bases compounds[G9] an
... Show MoreStarting from 4, - Dimercaptobiphenyl, a variety of phenolic Schiff bases (methylolic, etheric, epoxy) derivatives have been synthesized. All proposed structure were supported by FTIR, 1H-NMR, 13C-NMR Elemental analysis all analysis were performed in center of consultation in Jordan Universty.
the physical paraneters of oxadizole derivaties as donor molecules have been measured the charge transfer and methanol as solvent have been estimated from the electonic spectra
New heterocyclic derivatives of quinoline are reported. Reaction of quinoline-2-thiol 4 with hydrazine hydrate gave 2-hydrazionoquinoline 5. Treatment of 5 with CS2 in pyridine afforded 1,2,4-triazolo-[4,3-a]- quinolin-1-2H-thione 6, whereas the reaction of 5 with carboxylic acids namely formic acid or acetic acid, yielded the 1,2,4-triazol-[4,3-a]-quinolin 7 or 5-methyl-1,2,4-triazolo [4,3-a]-quinoline 8 through ring closure. Diazotization of 5 under acidic conditions produced the fused tetrazole compound 9, tetrzolo-[1,5-a]- quinoline. Moreover, treatment of 5 with active methlyene compounds gave two pyrazole derivatives 10 and 11. Azomethines 12a-e were prepared through condensation of 5 with aromatic aldehydes or ketones.
A series of new 2-quinolone derivatives linked to benzene sulphonyl moieties were performed by many steps: the first step involved preparation of different coumarins (A1,A2) by condensation of different substituted phenols with ethyl acetoacetate. The compound A1 was treated with nitric acid to afford two isomers of nitrocoumarin derivatives (A3) and (A4). The prepared compounds (A2, A3) were treated with hydrazine hydrate to synthesize different 2-quinolone compounds (A5,A6) while the coumarin treated with different amines gave compounds (A7,A8). Then the synthesized 2-quinolone compounds (A5-A8) treated with benzene sulphonyl chloride to afford new sulfonamide derivatives (A9-A12). The synthesized compounds were characterized by FT-IR, 1H
... Show More