Preferred Language
Articles
/
bsj-2456
Degradation of Dazomet by Thermal Fenton and Photo-Fenton Processes under UV and Sun lights at Different Temperatures
...Show More Authors

In this research, the degradation of Dazomet has been studied by using thermal Fenton process and photo-Fenton processes under UV and lights sun. The optimum values of amounts of the Fenton reagents have been determined (0.07g FeSO4 .7H2O, 3.5µl H2O2) at 25 °C and at pH 7 where the degradation percentages of Dazomet were recorded high. It has been found that solar photo Fenton process was more effective in degradation of Dazomet than photo-Fenton under UV-light and thermal Fenton processes, the percentage of degradation of Dazomet by photo-Fenton under sun light are 88% and 100% at 249 nm and 281 nm respectively, while the percentages of degradation for photo-Fenton under UV-light are 87%, 96% and for thermal Fenton are 70% and 66.8% at 249 nm and 281 nm respectively. In this research the effect of temperature on all the reactions has been studied in the range 25°C-45°C, it has been noticed that the reaction rate constant (k) has increased with increasing temperature, and the best percentage degradation of Dazomet was at 45°C in all processes, so, the thermodynamic functions ?G*, ?H*, ?S* have been calculated

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jun 05 2023
Journal Name
Al-khwarizmi Engineering Journal
Treatment of Petroleum Refinery Wastewater by Sono Fenton Process Utilizing the in-Situ Generated Hydrogen Peroxide
...Show More Authors

Combining ultrasonic irradiation and the Fenton process as a sono-Fenton process, the chemical oxygen demand (COD) in refinery wastewater was successfully eliminated using response surface methodology (RSM) with central composite design (CCD). The impact of two main influential operational parameters (iron dosage and reaction time) on the COD removal from wastewater generated by an Iraqi petroleum refinery facility was explored. Removal of 85.81% was attained under the optimal conditions of 21 minutes and 0.289 mM of  concentration. Additionally, the results revealed that the concentration of has the highest effect on the COD elimination, followed by reaction time. The high R2 value (96.40%) validated the strong fit of the mo

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (6)
Scopus Crossref
Publication Date
Sun Jun 01 2025
Journal Name
Iop Conference Series: Earth And Environmental Science
A Review on Induced Electro-Fenton Process for Wastewater Treatment
...Show More Authors
Abstract<p>Induced EF is among the most important of advanced oxidation processes (AOPs) It was employed to treat different kinds of wastewater. In the present review, the types and mechanism of induced EF were outlined. Parameters affecting this process have been mentioned with details. These are current density, pH, H<sub>2</sub>O<sub>2</sub> concentration, and time. The application of induced electro Fenton in various sectors of industries like textile, petroleum refineries, and pharmaceutical were outlined. The outcomes of this review demonstrate the vital role of induced EF in treatment of wastewater at high efficiency and low cost in contrast with conventional technique</p> ... Show More
View Publication
Crossref
Publication Date
Wed Jun 21 2023
Journal Name
Journal Of Electrochemical Science And Engineering
Phenol removal by electro-Fenton process using a 3D electrode with iron foam as particles and carbon fibre modified with graphene
...Show More Authors

The 3D electro-Fenton technique is, due to its high efficiency, one of the technologies suggested to eliminate organic pollutants in wastewater. The type of particle electrode used in the 3D electro-Fenton process is one of the most crucial variables because of its effect on the formation of reactive species and the source of iron ions. The electrolytic cell in the current study consisted of graphite as an anode, carbon fiber (CF) modified with graphene as a cathode, and iron foam particles as a third electrode. A response surface methodology (RSM) approach was used to optimize the 3D electro-Fenton process. The RSM results revealed that the quadratic model has a high R2 of 99.05 %. At 4 g L-1 iron foam particles, time of 5 h, and

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Jun 22 2020
Journal Name
Baghdad Science Journal
Effects of Anthracene Doping Ratio and UV Irradiation Time on Photo-Fries Rearrangement of Polycarbonate
...Show More Authors

Thin films of pure polycarbonate (PC) with anthracene doping PC films for different doping ratios (10, 20, 30, 40, 50 and 60 ml) were prepared by using a casting method. The influence of anthracene doping ratio on photo-fries rearrangement of polycarbonate was systematic investigated. Furthermore, pure PC and anthracene doping PC films were irradiated via UV light at a wavelength (254 nm) for different periods (5, 240, 288, and 360 hrs). The photo-fries rearrangement occurring in pure PC and anthracene doping PC films were monitored using UV and FTIR spectroscopies. The photo-fries rearrangement leads to scission the carbonate linkage and formation phenylsalicylate and dihydroxybenzophenes. The result of the UV spectrum confirms disappea

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu Nov 13 2014
Journal Name
Asian Academic Research Associates
Thermodynamic Study of Poly (Vinyl Alcohol) in Aqueous Solution and in Tetrahydrofurfuryl alcohol at Different Temperatures
...Show More Authors

Publication Date
Sun Sep 03 2017
Journal Name
Baghdad Science Journal
Photocatalytic degradation of indigo carmine by ZnO photocatalyst under visible light irradiation
...Show More Authors

In this work, the photocatalytic degradation of indigo carmine (IC) using zinc oxide suspension was studied. The effect of influential parameters such as initial indigo carmine concentration and catalyst loading were studied with the effect of Vis irradiation in the presence of reused ZnO was also investigated. The increased in initial dye concentration decreased the photodegradation and the increased catalyst loading increased the degradation percentage and the reused-ZnO exhibits lower photocatalytic activity than the ZnO catalyst. It has been found that the photocatalytic degradation of indigo carmine obeyed the pseudo-first-order kinetic reaction in presence of zinc oxide. This was found from plotting the relationship between ln

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (7)
Scopus Crossref
Publication Date
Mon Sep 20 2021
Journal Name
Key Engineering Materials
Heat Treatment at Different Temperatures and its Effect on the Optical Properties of Pure PMMA and PMMA-Coumarin
...Show More Authors

The effect of thermal treatment on optical constants of pure PMMA and with addition (15 and 35) ml of coumarin at different temperatures (100, 110 and 120) C0 for 1 hour were investigated. Cast method used to prepares films of pure PMMA and PMMA with (15 and 35) of coumarin. UV/VIS spectrometer technique used to measure the absorption spectra for these films. The optical constant (absorption spectra and absorption coefficient) don’t changes after applied temperatures in pure PMMA film but the optical constant (absorption spectra and absorption coefficient) in PMMA with (15 and 35) ml of coumarin increased with applied temperatures. The optical energy gap of pure PMMA and PMMA with (15 and 35) ml of coumarin sl

... Show More
View Publication
Scopus (7)
Crossref (4)
Scopus Crossref
Publication Date
Sun Sep 03 2017
Journal Name
Baghdad Science Journal
Sol- Gel Synthesis of Hematite Nanoparticles and Photo Degradation of Cibacron Red FN-R Dye
...Show More Authors

This paper describes the synthesis of ?- Fe2O3 nanoparticles by sol-gel route using carboxylic acid(2-hydroxy benzoic acid) as gelatin media and its photo activity for degradation of cibacron red dye . Hematite samples are synthesized at different temperatures: 400, 500, 600, 700, 800 and 900 ?C at 700 ?C the ?-Fe2O3 nanoparticles are formed with particle size 71.93 nm. The nanoparticles are characterized by XRD , SEM, AFM and FTIR . The 0.046 g /l of the catalyst sample shows high photo activity at 3x10-5M dye concentration in acidic medium at pH 3.

View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sun Feb 10 2019
Journal Name
Iraqi Journal Of Physics
Preparation of TiO2 nanorods by Sol–Gel template method and measured its photo- catalytic activity for degradation of methyl orange
...Show More Authors

Titanium dioxide nanorods have been prepared by sol-gel template
method. The structural and surface morphology of the TiO2 nanorods was
investigated by X-ray diffraction (XRD) and atomic force microscopy
(AFM), it was found that the nanorods produced were anatase TiO2 phase.
The photocatalytic activity of the TiO2 nanorods was evaluated by the
photo degradation of methyl orange (MO). The relatively higher
degradation efficiency for MO (D%=78.2) was obtained after 6h of exposed
to UV irradiation.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Nature Environment And Pollution Technology
The Kinetic Model for Decolourization of Commercial Direct Blue 2 Azo Dye Aqueous Solution by the Fenton Process and the Effect of Inorganic Salts
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref